Categories:

Ray Peat, PhD – Concerns with Starches

Also see:
Collection of Ray Peat Quote Blogs by FPS
Scanning Electron Microscope (SEM) images of plant cell microparticles in urine sediment
THE PHENOMENON OF PERSORPTION: PERSORPTION, DISSEMINATION, AND ELIMINATION OF MICROPARTICLES
Fermentable Carbohydrates, Anxiety, Aggression
Ray Peat, PhD on Low Blood Sugar & Stress Reaction
Low Blood Sugar Basics
Belly Fat, Cortisol, and Stress
Toxicity of Stored PUFA
PUFA Accumulation & Aging
PUFA Promote Stress Response; Saturated Fats Suppress Stress Response
Ray Peat, PhD on the Benefits of the Raw Carrot
Estrogen, Serotonin, and Aggression
The effect of raw carrot on serum lipids and colon function
Protective Bamboo Shoots
Calcium to Phosphorus Ratio, PTH, and Bone Health
Carbohydrates and Bone Health
Calcium Paradox
Endotoxin-lipoprotein Hypothesis
Endotoxin: Poisoning from the Inside Out
Protection from Endotoxin
Bowel Toxins Accelerate Aging
Protective Cascara Sagrada and Emodin
Fermentable Carbohydrates, Anxiety, Aggression
Intestinal Serotonin and Bone Loss
Autoimmunity and Intestinal Flora
Are Happy Gut Bacteria Key to Weight Loss?

This blog offers a short synopsis of the primary concerns to have with dietary starches. I offer five tips when eating starches at the end of the blog. Italicized quotes are by Ray Peat, PhD.

Bad picture of a potato.

Bad picture of a potato.

1. Because of their glycemia, starches tend to cause blood sugar dysregulation compared to fructose and sugar (sucrose), promoting the effects of adrenaline, cortisol, stored PUFA, endotoxin, and estrogen.

“If you take orange juice with some fat it will be more stabilizing to your blood sugar than the grits and potatoes. Starches increase the stress hormones, interfering with progesterone and thyroid.”

“The polyunsaturated fatty acids, which break down into toxic fragments and free radicals and prostaglandin-like chemicals, are–along with bacterial toxins produced in the intestine–the source of the main inflammatory and degenerative problems. Sugar and the minerals in fruits are fairly effective in keeping free fatty acids from being released from our tissues, and the fats we synthesize from them are saturated, and aren’t likely to be stored as excess fat, because they don’t suppress metabolism (as polyunsaturated fats and some amino acids do). The minerals of fruits and milk contribute to metabolic activation, and prevention of free-radical damage.”

“Rather than the sustained hyperglycemia which is measured for determining the glycemic index, I think the “diabetogenic” or “carcinogenic” action of starch has to do with the stress reaction that follows the intense stimulation of insulin release. This is most easily seen after a large amount of protein is eaten. Insulin is secreted in response to the amino acids, and besides stimulating cells to take up the amino acids and convert them into protein, the insulin also lowers the blood sugar. This decrease in blood sugar stimulates the formation of many hormones, including cortisol, and under the influence of cortisol both sugar and fat are produced by the breakdown of proteins, including those already forming the tissues of the body. At the same time, adrenalin and several other hormones are causing free fatty acids to appear in the blood.”

“It’s the stored PUFA, released by stress or hunger, that slow metabolism.”

2. Starches can feed bacteria in the lower portion of the intestines if not digested quickly, increasing intestinal toxin burden and fermentation of carbohydrates which can stress the liver and produce changes in the metabolic rate, mood, and mediators of inflammation (like serotonin, estrogen, endotoxin). Excessive endotoxin exposure affects the liver’s production of cholesterol (not favorable).

“The upper part of the small intestine is sterile in healthy people. In the last 40 years, there has been increasing interest in the “contaminated small-bowel syndrome,” or the “small intestine bacterial overgrowth syndrome.” When peristalsis is reduced, for example by hypothyroidism, along with reduced secretion of digestive fluids, bacteria are able to thrive in the upper part of the intestine. Sugars are very quickly absorbed in the upper intestine, so starches and fibers normally provide most of the nourishment for bowel bacteria…Thyroid hormone increases digestive activity, including stomach acid and peristalsis, and both thyroid and progesterone increase the ability of the intestine to absorb sugars quickly; their deficiency can permit bacteria to live on sugars as well as starches.”

“Bacterial endotoxin increases serotonin release from the intestine, and increases its synthesis in the brain (Nolan, et al., 2000) and liver (Bado, 1983). It also stimulates its release from platelets, and reduces the lungs’ ability to destroy it. The formation of serotonin in the intestine is also stimulated by the lactate, propionate and butyrate that are formed by bacteria fermenting fiber and starch, but these bacteria also produce endotoxin. The inflammation-producing effects of lactate, serotonin, and endotoxin are overlapping, additive, and sometimes synergistic, along with histamine, nitric oxide, bradykinin, and the cytokines.”

“Starches and fibers support bacterial growth and can increase serotonin.”

“Since cholesterol is the source of progesterone and testosterone (and pregnenolone, DHEA, etc.), and sugar increases it, having fruit rather than starch might increase the hormones. Those hormones, antagonistic to cortisol, can help to reduce waist fat.”

“Sugar helps the liver to make cholesterol, switching from starchy vegetables to sweet fruits will usually bring cholesterol levels up to normal.”

“Besides avoiding foods containing fermentable fibers and starches that resist quick digestion, eating fibrous foods that contain antibacterial chemicals, such as bamboo shoots or raw carrots, helps to reduce endotoxin and serotonin.”

“Bacteria thrive on starches that aren’t quickly digested, and the bacteria convert the energy into bulk, and stimulate the intestine. (But at the same time, they are making the toxins that affect the hormones.)”

“Polysaccharides and oligosaccharides include many kinds of molecules that no human enzyme can break down, so they necessarily aren’t broken down for absorption until they encounter bacterial or fungal enzymes. In a well maintained digestive system, those organisms will live almost exclusively in the large intestine, leaving the length of the small intestine for the absorption of monosaccharides without fermentation. When digestive secretions are inadequate, and peristalsis is sluggish, bacteria and fungi can invade the small intestine, interfering with digestion and causing inflammation and toxic effects.”

3. Starches tend to be more fattening than sugar because of their effect on blood sugar and insulin. A starchy diet in conjunction with the consumption of polyunsaturated fats is a reliable way to produce obesity.

“When the idea of “glycemic index” was being popularized by dietitians, it was already known that starch, consisting of chains of glucose molecules, had a much higher index than fructose and sucrose. The more rapid appearance of glucose in the blood stimulates more insulin, and insulin stimulates fat synthesis, when there is more glucose than can be oxidized immediately. If starch or glucose is eaten at the same time as polyunsaturated fats, which inhibit its oxidation, it will produce more fat. Many animal experiments show this, even when they are intending to show the dangers of fructose and sucrose.”

“Starch is less harmful when eaten with saturated fat, but it’s still more fattening than sugars.”

“Starch and glucose efficiently stimulate insulin secretion, and that accelerates the disposition of glucose, activating its conversion to glycogen and fat, as well as its oxidation. Fructose inhibits the stimulation of insulin by glucose, so this means that eating ordinary sugar, sucrose (a disaccharide, consisting of glucose and fructose), in place of starch, will reduce the tendency to store fat. Eating “complex carbohydrates,” rather than sugars, is a reasonable way to promote obesity. Eating starch, by increasing insulin and lowering the blood sugar, stimulates the appetite, causing a person to eat more, so the effect on fat production becomes much larger than when equal amounts of sugar and starch are eaten. The obesity itself then becomes an additional physiological factor; the fat cells create something analogous to an inflammatory state. There isn’t anything wrong with a high carbohydrate diet, and even a high starch diet isn’t necessarily incompatible with good health, but when better foods are available they should be used instead of starches. For example, fruits have many advantages over grains, besides the difference between sugar and starch. Bread and pasta consumption are strongly associated with the occurrence of diabetes, fruit consumption has a strong inverse association.”

“When starch is well cooked, and eaten with some fat and the essential nutrients, it’s safe, except that it’s more likely than sugar to produce fat, and isn’t as effective for mineral balance.”

“Per calorie, sugar is less fattening than starch, partly because it stimulates less insulin, and, when it’s used with a good diet, because it increases the activity of thyroid hormone.”

“In an old experiment, a rat was tube-fed ten grams of corn-starch paste, and then anesthetized. Ten minutes after the massive tube feeding, the professor told the students to find how far the starch had moved along the alimentary canal. No trace of the white paste could be found, demonstrating the speed with which starch can be digested and absorbed. The very rapid rise of blood sugar stimulates massive release of insulin, and rapidly converts much of the carbohydrate into fat.”

4. Starches lack fructose. Fructose helps raise the metabolic rate and regulate insulin secretion.

“Starch is the only common carbohydrate that contains no fructose.”

“Here’s a currently often cited article which claimed to show that fructose causes ‘insulin resistance’ compared to a starch diet, but careful reading would show that it confirms the powerful protective effect of fructose (and sucrose), since if the greater weight gain of the starch eaters continued beyond the short 5 weeks of the experiment, after a year the starchy rats would have weighed twice as much as the lean sugar eaters. The fructose limits insulin secretion, but intensifies metabolism, burning calories faster.”

5. Starch can irritate the gut lining, and starch granules can enter the bloodstream and urine (persorption) inappropriately. Chronic irritation of the gut lining makes serotonin, endotoxin, nitric oxide, and estrogen serious threats to the metabolism, the liver, and overall well being. Persorption promotes tissue injury and circulatory issues.

“Persorption refers to a process in which relatively large particles pass through the intact wall of the intestine and enter the blood or lymphatic vessels. It can be demonstrated easily, but food regulators prefer to act as though it didn’t exist. The doctrine that polymers–gums, starches, peptides, polyester fat substitutes–and other particulate substances can be safely added to food because they are “too large to be absorbed” is very important to the food industry and its shills.

When the bowel is inflamed, toxins are absorbed. The natural bacterial endotoxin produces many of the same inflammatory effects as the food additive, carrageenan. Like inflammatory bowel disease, the incidence of liver tumors and cirrhosis has increased rapidly. Liver damage leads to hormonal imbalance. Carrageenan produces inflammation and immunodeficiency, synergizing with estrogen, endotoxin and unsaturated fatty acids.”

“In the presence of bacterial endotoxin, respiratory energy production fails in the cells lining the intestine. Nitric oxide is probably the main mediator of this effect.”

“Intestinal inflammation is often behind recurrent tooth infectons, and a daily raw carrot can make a big difference (along with avoiding legumes, undercooked starches and raw or undercooked vegetables).”

“Volkheimer found that mice fed raw starch aged at an abnormally fast rate, and when he dissected the starch-fed mice, he found a multitude of blocked arterioles in every organ, each of which caused the death of the cells that depended on the blood supplied by that arteriole. It isn’t hard to see how this would affect the functions of organs such as the brain and heart, even without considering the immunological and other implications….”

“Tiny particles of insoluble materials — clay, starch, soot, bacteria — are all potential sources of serious inflammatory reactions, and the ultra-small particles are potentially ultra-numerous and harder to avoid.”

“Around 1988 I read Gerhard Volkheimer’s persorption article, and after doing some experiments with tortillas and masa, I stopped eating all starch except for those, then eventually I stopped those. Besides grains of starch entering the blood stream, lymph, and cerebral spinal fluid, starch feeds bacteria, increasing endotoxin and serotonin.”

“For people with really sensitive intestines or bad bacteria, starch should be zero.”

6. In some cases, they are high in phosphorus relative to calcium as in grains, beans, and legumes. Sugar is more friendly on mineral balance and bone health relative to starch.

“The foods highest in phosphate, relative to calcium, are cereals, legumes, meats, and fish. Many prepared foods contain added phosphate. Foods with a higher, safe ratio of calcium to phosphate are leaves, such as kale, turnip greens, and beet greens, and many fruits, milk, and cheese.”

“When starch is well cooked, and eaten with some fat and the essential nutrients, it’s safe, except that it’s more likely than sugar to produce fat, and isn’t as effective for mineral balance.”

7. Some are reactive to starches, like the potato, because they are nightshade vegetables.

“When a person has limited money for food, potatoes are a better staple than beans or oats. Starches associated with saponins, alkaloids, and other potentially pro-inflammatory things make them a less than ideal food, if you have digestion-related health problems, and if you can afford to choose. New potatoes are tastier, less starchy, and probably less likely to cause digestive irritation.”

Help with Starches:
1. Gauge your individual reaction to starches vs. sugar. This can take some trial and error. You may find that one helps more than the other in raising the metabolic rate or keeping your metabolic rate up or that having both in your diet is more helpful than either alone.
2. Combine cooked-starches with a animal protein and plenty of saturated fat, like butter. The saturated fat blunts the glycemia of the starches and has anti-microbial effects in the intestines. I boil white potatoes for 40 minutes when making mashed potatoes. I then add butter, salt, and milk for taste and appropriate consistency. Shorter boiling times for me causes intestinal gas. For those that have an allergic reaction to potatoes, in addition to cooking well, skin removal is another step to take to avoid a reaction.
3. Eat a diet that is in favor of the more digestible, micronutrient rich, blood-sugar friendly, sweet-tasting carbohydrates from ripe or cooked fruits, fresh orange juice, milk, and honey. If bowel toxins accelerate the aging process, then a health-preserving diet is low in starch. Additionally, the realities of the persorption of starch granules is a systemic concern that needs further attention considering the amount of starch in the SAD diet from the likes of grains/flour, beans, legumes, and corn.
4. Well-cooked below-ground vegetables, masa harina, and hominy are some of the best starches to consume. The younger versions of below-ground vegetables (i.e. new potatoes or baby beets for example) contain less starch and more sugar compared to the mature plants. White potatoes are a good source of protein especially for vegetarians.
5. If you react well to supplemental powdered fructose, it can be used along side starch-containing meals as a means to regulate blood sugar and encourage liver-glycogen storage and efficient glucose use.

Posted in General.

Tagged with , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , .


Coffee Done Right – Tips to Help Avoid Coffee Intolerance

Also see:
Diet, nutrition, physical activity and liver cancer
Caffeine: A vitamin-like nutrient, or adaptogen by Ray Peat, PhD
Coffee Inhibit Iron Absorption
Low Blood Sugar Basics
Ray Peat, PhD on Low Blood Sugar & Stress Reaction
Stress – A Shifting of Resources
Sugar (Sucrose) Restrains the Stress Response
Hope for Hypoglycemia: It’s Not Your Mind, It’s Your Liver by Broda Barnes, MD, PhD
Chronic caffeine intake decreases circulating catecholamines and prevents diet-induced insulin resistance and hypertension in rats.

Potent Stimulator
Coffee is a potent metabolic stimulator and must be viewed as such. The caffeine in coffee is powerful and can act like thyroid to increase your metabolic rate and the oxidation of sugar, making it a health-protective food. Coffee also has supportive nutrients in the form of B vitamins and magnesium and is a welcome companion to meat-containing meals for adults since it helps inhibit iron absorption.

These characteristics make coffee a useful tool in your health toolbox provided that you’re taking the right steps to maximize effectiveness. This blog describes what to expect when you’re doing coffee the right way and offers a handful of tips to help if you’re “coffee intolerant.” The blog is written in the context of health promotion rather than one centered solely around body composition and fat loss.

Self Awareness
Symptoms to expect when you do coffee right are calmness, focus, motivation, warmth, and stable energy. Coffee done wrong leads to anxiety, shakiness, sweating, feeling wired, inability to focus, and sometimes cold extremities. Truthfully there is no right or wrong because whether you react well or not, the situation serves as a learning tool if you’re knowledgeable and aware enough to assess and correct the symptoms.

If you do get unfriendly symptoms from using coffee, stop what you’re doing as soon as possible and correct by eating or drinking something sweet like orange juice, honey, a ripe fruit, ice cream, or sweetened milk. This action will lower the symptom-producing substances by raising the blood sugar.

Stepping on the Gas Pedal
The metabolic stimulation from coffee ingestion increases the metabolism, which is very friendly, if the metabolic support is adequate. Metabolic stimulators must be matched with adequate metabolic support, especially adequate blood glucose. The common symptom of feeling anxious or shaky after coffee consumption is from a lack of support, which causes low blood sugar (hypoglycemia).

RT Nokia_001452

When you drink coffee, the glucose in the bloodstream is used as the caffeine stimulates the body’s metabolism. Coffee is like stepping on the gas pedal in your car. When the fuel system delivers fuel to the engine in adequate amounts, the engine performs well and the car takes off in relation to the intensity of the pressure on the pedal. However, if the fuel system is faulty in some fashion, the engine sputters and is sluggish. For us, the inadequate support from our “fuel system” shows up as unfavorable symptoms as the stress response is activated.

Problems with coffee begin when our body cannot provide enough fuel for cells given the level of stimulation. If too much stimulation occurs, a stress alarm is signaled that mobilizes resources to provided energy to cells. Your body is saying, “we’ve got lots of stimulation going on here; we need to mobilize resources right now.”

The stress alarm’s basic function is to raise the blood sugar. This involves the release of glycogen from the liver under the direction of adrenaline and glucagon, and the conversion of the body’s protein (skin, muscles, thymus gland) into glucose using the liver’s help. Cortisol directs this conversion of protein into glucose. The liver is intimately involved in blood sugar regulation.

Stimulation Requires Support
Your goal is to avoid the stress alarm from inadequacy of support. The first basic rule is to have coffee with a meal. This delays entry of the caffeine into the bloodstream providing a time-release type effect. A meal is comprised of a protein from an animal and carbohydrate from a plant. Usually animal proteins also contain dietary fat, preferably saturated fat.

Secondly, add sugar or honey and milk, or sugar or honey and cream to the coffee as an additional buffer against low blood sugar. These step ensures that you are providing the fuel necessary to match the press of your metabolic gas pedal. The amounts of each added ingredient will vary from person to person and comes with practice. Keep in mind that the amounts can change over time and in relation to your mental or physical demands.

Thirdly, do not have coffee on an empty stomach or immediately upon waking. At these times, you likely do not have the support needed to match the stimulation. You want to avoid activating the stress systems, not encourage their activation through inappropriate choices. For those who wake and aren’t feeling hungry but have the habit of having coffee prior to eating anything, this practice tends to prolong the effects of blood-sugar relating stress hormones which preferably you want to decrease, and not increase, upon rising.

Lastly, be aware that the hotter the coffee is the more stimulating it tends to be. If you’re susceptible to low blood sugar from drinking hot coffee, follow the aforementioned rules in conjunction with drinking cooler coffee.

I’ve found that each person seems to have his/her cut-off time in regard to consuming coffee without affecting his/her sleep. When I have coffee after 5 pm, it affects my ability to fall asleep easily at night. Find out what time “last call” is for you through trial and error.

0601141856

Coffee Intolerance
Your “coffee tolerance” can be used as a barometer to measure health progression or lack there of. If you improve your tolerance to coffee, you’re likely headed in the right direction nutritionally. If this doesn’t happen, it could be time to reassess your strategies.

When your coffee tolerance is poor, it might say that the liver is suffering and is not storing glycogen very well and can’t back you up efficiently (by releasing glycogen) when there is excessive stimulation from coffee. It could also be a signal that you’re not following one or more of the rules listed in the previous section of this blog.

Hypothyroidism increases susceptibility to low blood sugar because of the effects of thyroid hormone on the liver. Hypothyroid individuals can have coffee intolerance symptoms for this reason and sometimes need to show extra caution when drinking coffee. Broda Barnes’ book “Hypoglycemia: It’s Not Your Mind, It’s Your Liver” is an excellent resource to explore this topic further.

Going the extra mile is sometimes necessary for those that are really susceptible to over stimulation from coffee. One such step is adding a little coffee to milk/sugar instead of adding milk/sugar to coffee. As you improve, you will be able to handle more coffee and progressively be less dependent upon support — you will be able to press harder on the metabolic gas pedal. Another option is sipping a little coffee with support throughout the day so you get a little stimulation without it being excessive.

Improved tolerance to coffee may also be accompanied by improvement in other things like sleep quality, energy levels, digestion, cravings, time to fatigue, calmness, and duration that you can comfortably go between meals. As the metabolic rate rises from consistent coffee consumption, the need for all nutrient increases so a sensible diet should consist of foodstuff that offer dense nutrition with few digestive inhibitors (such as ripe fruits, milk, eggs, shellfish, beef liver) rather than nutrient deficient foods (such as pasta, bread, cereals, packaged foods) or hard to digest foods (like raw vegetables, beans, nuts, and legumes).

===============

“Often, a woman who thinks that she has symptoms of hypoglycemia says that drinking even the smallest amount of coffee makes her anxious and shaky. Sometimes, I have suggested that they try drinking about two ounces of coffee with cream or milk along with a meal. It’s common for them to find that this reduces their symptoms of hypoglycemia, and allows them to be symptom-free between meals.

…In animal experiments that have been used to argue that pregnant women shouldn’t drink coffee, large doses of caffeine given to pregnant animals retarded the growth of the fetuses. But simply giving more sucrose prevented the growth retardation. Since caffeine tends to correct some of the metabolic problems that could interfere with pregnancy, it is possible that rationally constructed experiments could show benefits to the fetus from the mother’s use of coffee, for example by lowering bilirubin and serotonin, preventing hypoglycemia, increasing uterine perfusion and progesterone synthesis, synergizing with thyroid and cortisol to promote lung maturation, and providing additional nutrients.” -Ray Peat, PhD

Posted in General.

Tagged with , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , .


Stress — A Shifting of Resources

Also see:
Collection of FPS Charts
Low Carb Diet – Death to Metabolism
Can Endurance Sports Really Cause Harm? The Lipopolysaccharides of Endotoxemia and Their Effect on the Heart
Running on Empty
Exercise and Endotoxemia
Ray Peat, PhD on Endotoxin
Endotoxin: Poisoning from the Inside Out
Ray Peat, PhD: Quotes Relating to Exercise
Ray Peat, PhD and Concentric Exercise
Potential Adverse Cardiovascular Effects from Excessive Endurance Exercise
Bowel Toxins Accelerate Aging
Exercise Induced Stress
Carbohydrate Lowers Exercise Induced Stress
Sugar (Sucrose) Restrains the Stress Response
Low Blood Sugar Basics
Ray Peat, PhD on Low Blood Sugar & Stress Reaction
Arachidonic Acid’s Role in Stress and Shock
Blood Sugar – Resistance to Allergy and Shock
Shock Increases Estrogen
A long childhood feeds the hungry human brain
Anatomy of the Heart

Your body manages its resources in relation to need. The chart below attempts to provide a visual of the manipulation of resources that occurs during stress.

Our physiology is designed to handle occasional stressors, but if the stressors are frequent or elevated in intensity then expect adverse consequences eventually. We can only borrow from other areas of the body to nourish others in a time of need so many times until the adaptive systems break down.

When the adaptive systems do break down, we experience symptoms of some sort. The symptoms are usually a result of a prolonged problem so have patience when attempting to correct them.

fps shift stress

Supporting Quotes:
“Digestion is quickly shut down during stress…The parasympathetic nervous system, perfect for all that calm, vegetative physiology, normally mediates the actions of digestion. Along comes stress: turn off parasympathetic, turn on the sympathetic, and forget about digestion.” -Robert Sapolsky

Quotes by Ray Peat, PhD:
“During moderate exercise, adrenalin causes increased blood flow to both the heart and the skeletal muscles, while decreasing the flow of blood to other organs. The increased circulation carries extra oxygen and nutrients to the working organs, while the deprivation of oxygen and glucose pushes the other organs to a catabolic balance. This simple circulatory pattern achieves to some extent the same kind of redistribution of resources, acutely, that is achieved in more prolonged stress by the actions of the glucocorticoids and their antagonists.”

“The intestine really is where people should be paying more attention because any kind of stress or shock reduces circulation to your intestine, and that makes it more permeable or “leaky”. And aspirin incidentally is now being studied as possibly the best defense against a leaky intestine, even though there is a tremendous amount of Tylenol-type propaganda saying “Don’t use aspirin, it makes your intestine leak”, but, in fact, it prevents endotoxin and bacterial movement from your intestine into your bloodstream.” (interview)

‎”Incidental stresses, such as strenuous exercise combined with fasting (e.g., running or working before eating breakfast) not only directly trigger the production of lactate and ammonia, they also are likely to increase the absorption of bacterial endotoxin from the intestine. Endotoxin is a ubiquitous and chronic stressor. It increases lactate and nitric oxide, poisoning mitochondrial respiration, precipitating the secretion of the adaptive stress hormones, which don’t always fully repair the cellular damage.”

“Bacterial endotoxin causes some of the same effects as adrenalin. When stress reduces circulation to the bowel, causing injury to the barrier function of the intestinal cells, endotoxin can enter the blood, contributing to a shock state, with further impairment of circulation.”

“The amount of injury needed to increase the endotoxin in the blood can be fairly minor. Two thirds of people having a colonoscopy had a significant increase in endotoxin in their blood, and intense exercise or anxiety will increase it. Endotoxin activates the enzyme that synthesizes estrogen while it decreases the formation of androgen (Christeff, et aI., 1992), and this undoubtedly is partly responsible for the large increases in estrogen in both men and women caused by trauma, sickness or excessive fatigue.”

“Our innate immune system is perfectly competent for handling our normal stress induced exposures to bacterial endotoxin, but as we accumulate the unstable fats, each exposure to endotoxin creates additional inflammatory stress by liberating stored fats. The brain has a very high concentration of complex fats, and is highly susceptible to the effects of lipid peroxidative stress, which become progressively worse as the unstable fats accumulate during aging.”

Posted in General.

Tagged with , , , , , , , , , , , , , , , , , , , .


Charts: Mean SFA, MUFA, & PUFA Content of Various Dietary Fats

Also see:
Polyunsaturated Fatty Acid Content of Cosmetic Oils
Collection of FPS Charts
Collection of Ray Peat Quote Blogs by FPS
Fats and Oils: The significance of temperature
Master List – Ray Peat, PhD Interviews
PUFA Accumulation & Aging
Unsaturated Fats and Longevity
“Curing” a High Metabolic Rate with Unsaturated Fats
Fat Deficient Animals – Activity of Cytochrome Oxidase
Dietary PUFA Reflected in Human Subcutaneous Fat Tissue
Toxicity of Stored PUFA
PUFA, Development, and Allergy Incidence
PUFA, Aging, Cytochrome Oxidase, and Cardiolipin
Calorie Restriction, PUFA, and Aging
Errors in Nutrition: Essential Fatty Acids
Dietary Fats, Temperature, and Your Body
The Coconut Wars

Key:
SFA = Saturated fatty acids
MUFA = Monunsaturated fatty acids
PUFA = Polyunsaturated fatty acids

Based on decades of research by Ray Peat, PhD, FPS encourages consuming foods with the highest ratio of SFA to PUFA. The SFA:PUFA (S/P) ratio of common dietary fats is shown in the third chart on this page. On that chart, the fats appearing highest on the list are the most health protective.

The information in the charts below was compiled with the help of a government resource that is available in full by searching for the source provided on the documents. Eggs and dairy foods are not included in this chart because I could not locate the information from the same source on the internet.

Sorted by Mean Percentage of Polyunsaturated Fatty Acids (PUFA) - Highest to Lowest

Sorted by Mean Percentage of Polyunsaturated Fatty Acids (PUFA) – Highest to Lowest

Sorted by Mean Percentage of Saturated Fatty Acids (SFA) - Highest to Lowest

Sorted by Mean Percentage of Saturated Fatty Acids (SFA) – Highest to Lowest

Sorted by SFA%:PUFA% Ratio - Highest to Lowest (Most Safe to Least Safe)

Sorted by SFA%:PUFA% Ratio – Highest to Lowest
(Most Safe to Least Safe)

Posted in General.

Tagged with , , , , , , , , , , , , , , .


Women: Running into Trouble

Also see:
rethink how you exercise: An interview with Rob Turner Part 1
rethink how you exercise: An interview with Rob Turner Part 2
Components of Daily Energy Expenditure
Metabolic testing for athletes and couch potatoes
Exercise and Effect on Thyroid Hormone
Exercise Induced Stress
Potential Adverse Cardiovascular Effects from Excessive Endurance Exercise
Exercise Induced Menstrual Disorders
Ray Peat, PhD: Quotes Relating to Exercise
Ray Peat, PhD and Concentric Exercise
Overtraining, Undereating & Self-Inflicted Hypothyrodism: Thresholds for Low T3 and High Reverse T3 Levels at 8% & 15% Reduced Energy Intake + Exercise After Only 4 Days!
Running on Empty

Women: Running into Trouble

By

John Kiefer

Published: November 7, 2011Posted in: Strong(her)TrainingTags: 

When I look at the fat guy in the gym wasting his time on forearm curls to lose weight, I don’t feel sympathy. The big tough guy getting stapled to the bench by 365 pounds, when just a second ago he couldn’t even handle 315 pounds — nope, no sympathy there either. The girl who spends thirty minutes bouncing between the yes-no machines (abductor and adductor machines), who is going to have trouble walking the next day — I can’t muster even an iota of pathos. Nobody told them to do these things. But then I watch my friend, Jessica, running on the treadmill, day after day, year after year, running like a madwoman and going nowhere. Her body seems to get softer with every mile and the softer she gets the more she runs. I do feel pity for her because everybody, everywhere has convinced her that running is the way to stay slim and toned.

There’s a Jessica in every gym and spotting one is easy. The woman that runs for an hour or more every day on the treadmill, who every month or so sets a new distance or time goal. Maybe the goal encompasses the treadmill workouts; maybe it will be her fifth fund-raising marathon; or maybe she’s competing with runners in Finland via Nike®. The goal doesn’t matter, because years of seeing her on the treadmill exposes the results: she’s still — I’m not going to sugar coat this — fat. Or worse, she’s fatter.

I tried to rescue my Jessica from the clutches of the cardio contingent, but to no avail until a month ago when she called to tell me that a blood test had confirmed her doctor’s suspicion: she had hypothyroidism — her body no longer made enough thyroid hormone. Her metabolism slowed to a snail’s pace and the fat was accumulating. Now she had a culprit to blame, it wasn’t the cardio causing her problems, it was her body rebelling. When Jessica asked my advice, I told her to do two things: schedule a second test for two weeks later and until then, stop all the goddamn running.

Don’t assume I’m picking on women or making fun. There are men out there who do the same, thinking cardio wipes away the gut resulting from regular weekend beer binges, but they are, in comparison, rare. I am targeting women for three very good reasons:

  1. They are often intensely recruited for fund-raisers like Team-In-Training, lured by the promise of slim, trim health resulting from the month of cardio training leading to a marathon in addition to helping the charity in question
  2. Some physique coaches prescribe 20-plus hours per week of pre-contest cardio for women (that’s a part-time job)
  3. Steady-state endurance activities like this devastate a woman’s metabolism. It will devastate a man’s too, but in different ways.

There’s not much I hate in the fitness world — well, that’s not true, I hate most things about its present state, but at the top of the list is over-prescribed cardio. I’m not talking about walking or even appropriate HIIT cardio, but the running, cycling, stair climbing or elliptical variety done for hours at or above 65 percent of max heart rate, actually anaerobic threshold is a better measure, but not practical for day-to-day use.

Trashing steady-state cardio is nothing new and the better of the physique gurus figured this out a long time ago, but even then, they only apply the no-steady-state-cardio rule to contest preparation. The non-cardio coaches fail to state the most detrimental effect, one that applies specifically to women and is a primary reason many first-time or second-time figure and bikini competitors explode in weight when returning to their normal diet. It’s the same reason the Jessicas of the world run for hours per week with negative results. Studies demonstrate beyond any doubt that in women, cardio chronically shuts down the production of the thyroid hormone, T3.1-11

T3 is the body’s preeminent regulator of metabolism by throttling the efficiency of cells.12-19 T3 acts in various ways to increase heat production.20-21 As I pointed out, in Logic Does Not Apply: A Calorie Is A Calorie, this is one reason using static equations to perform calorie-in, calorie-out weight loss calculations doesn’t work—well, that’s why it’s stupid, actually. When T3 levels are normal, the body burns enough energy to stay warm and muscles function at moderate efficiency. Too much thyroid hormone (hyperthyroidism) and the body becomes inefficient making weight gain almost impossible. Too little T3 (hypothyroidism) and the body accumulates body fat with ease, almost regardless of physical activity level.

Women unknowingly put themselves into the hypothyroid condition because they perform so much steady-state cardio. In the quest to lose body fat, T3 levels can grant success or a miserable failure because of how it influences other fat-regulating hormones.22-31 In addition, women get all the other negative effects, which I’ll get to. Don’t be surprised or aghast. It’s a simple, sensible adaption of the body, especially a body equipped to bear the full brunt of reproducing.

Think about it this way: the body is a responsive, adaptive machine evolved for survival. If running on a regular basis, the body senses excessive energy expenditure and adjusts to compensate. Remember, no matter what dreamy nonsense we invent about how we hope the body works, its endgame is always survival. Start wasting energy running and the body reacts by slowing the metabolism to conserve energy. Decreasing energy output is biologically savvy for the body: survive longer while doing this stressful, useless activity — as the body views it. Decreasing T3 production, increases efficiency and adjusts metabolism to preserves energy quickly.

Nothing exemplifies this increasing efficiency better than how the body starts burning fuel. Training at a consistently plus-65 percent heart rate adapts the body to save as much body fat as possible. That’s right, after regular training, fat cells stop releasing fat during moderate-intensity activities like they once did.32-33 Energy from body fat stores decreases by a whopping 30 percent. 34-35 To this end, the body even sets into motion a series of reactions that make it difficult for muscle to burn fat at all.36-41 Instead of burning body fat, the body is taking extraordinary measures to hold on to it. Still believe cardio is the fast track to fat loss?

But wait. By acting now, you too can lose muscle mass. That’s right. No more muscle because too much steady-state cardio triggers the loss of muscle.42-45 This seems to be a two-fold mechanism, with heightened and sustained cortisol levels triggering muscle loss,46-56 which upregulates myostatin, a potent destroyer of muscle tissue.57 Oh yeah — say good bye to bone density too — it declines with the muscle mass and strength.58-64 And long-term health? Out the window as well. The percentage of muscle mass is an independent indicator of health.65 Lose muscle, lose bone, lose health—all in this nifty little package.

When sewn together, these phenomena coordinate a symphony of fat gain for most female competitors post-figure contest. After a month—or three—of cardio surpassing the 20 hours-per-week mark, fat-burning is at an astonishing low, and fat cells await an onslaught of calories to store.66-72 The worst thing imaginable in this state would be to eat whatever you wanted as much as you wanted. The combination of elevated insulin and cortisol would not only make you fat, but creates new fat cells so that you can become fatter than ever.73-80

I won’t name names, but I have seen amazing displays of gluttony from the smallest, trimmest women. Entire pizzas disappear leaving only the flotsam of toppings that fell during the feeding frenzy; appetizer, meal, cocktails, dessert—a paltry 4000 calories at The Cheesecake Factory vanish as the wait staff delivers each. A clean plate for each return to the buffet — hell with that, the only thing they’re taking to the food bar is a spoon and they’re not coming back. There are no leftovers; there are no crumbs. Some women catch it in time and stop the devastation, but others quickly swell and realize that the supposed off-season look has become their every-season look. And guess what they do to fix it: cardio for an hour every morning and another in the evening to hasten things…

The “cardio craze” — and it is a form of insanity — is on my hit list and I’m determined to kill it. I don’t know what else I can say. There are better ways to lose fat, be sexy and skinny for life, better ways to prepare for the stage. Women, you need to get off the damn treadmill; I don’t care what you’re preparing for. Stop thinking a bikini-body is at the end of the next marathon or on the other side of that stage. It’s not if you use steady-state cardio to get there — quite the opposite. The show may be over, the finish line might be crossed, but the damage to your metabolism is just starting.

Don’t want to stop running, fine. At the very least stop complaining about how the fat won’t come off the hips and thighs or the ass. You’re keeping it there.

What about Jessica, my friend who’s dilemma spawned this article? Luckily she took my suggestion and cut the cardio. Two weeks later, her T3 count was normal. Who would have guessed?

1.     Baylor LS, Hackney AC. Resting thyroid and leptin hormone changes in women following intense, prolonged exercise training. Eur J Appl Physiol. 2003 Jan;88(4-5):480-4.

2.     Boyden TW, Pamenter RW, Rotkis TC, Stanforth P, Wilmore JH. Thyroidal changes associated with endurance training in women. Med Sci Sports Exerc. 1984 Jun;16(3):243-6.

3.     Wesche MF, Wiersinga WM. Relation between lean body mass and thyroid volume in competition rowers before and during intensive physical training. Horm Metab Res. 2001 Jul;33(7):423-7.

4.     Tremblay A, Poehlman ET, Despres JP, Theriault G, Danforth E, Bouchard C. Endurance training with constant energy intake in identical twins: changes over time in energy expenditure and related hormones. Metabolism. 1997 May;46(5):499-503.

5.     Rone JK, Dons RF, Reed HL. The effect of endurance training on serum triiodothyronine kinetics in man: physical conditioning marked by enhanced thyroid hormone metabolism. Clin Endocrinol (Oxf). 1992 Oct;37(4):325-30.

6.     Loucks AB, Callister R. Induction and prevention of low-T3 syndrome in exercising women. Am J Physiol. 1993 May;264(5 Pt 2):R924-30.

7.     Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Physiol. 1994 Mar;266(3 Pt 2):R817-23.

8.     Rosolowska-Huszcz D. The effect of exercise training intensity on thyroid activity at rest. J Physiol Pharmacol. 1998 Sep;49(3):457-66.

9.     Wirth A, Holm G, Lindstedt G, Lundberg PA, Bjorntorp P. Thyroid hormones and lipolysis in physically trained rats. Metabolism. 1981 Mar;30(3):237-41.

10.  Opstad PK, Falch D, Oktedalen O, Fonnum F, Wergeland R. The thyroid function in young men during prolonged exercise and the effect of energy and sleep deprivation. Clin Endocrinol (Oxf). 1984 Jun;20(6):657-69.

11.  Hohtari H, Pakarinen A, Kauppila A. Serum concentrations of thyrotropin, thyroxine, triiodothyronine and thyroxine binding globulin in female endurance runners and joggers. Acta Endocrinol (Copenh). 1987 Jan;114(1):41-6.

12.  Lanni A, Moreno M, Lombardi A, Goglia F. Thyroid hormone and uncoupling proteins. FEBS Lett. 2003 May 22;543(1-3):5-10. Review.

13.  Leijendekker WJ, van Hardeveld C, Elzinga G. Heat production during contraction in skeletal muscle of hypothyroid mice. Am J Physiol. 1987 Aug;253(2 Pt 1):E214-20.

14.  Silva JE. Thyroid hormone control of thermogenesis and energy balance. Thyroid. 1995 Dec;5(6):481-92. Review.

15.  Argyropoulos G, Harper ME. Uncoupling proteins and thermoregulation. J Appl Physiol. 2002 May;92(5):2187-98. Review.

16.  Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997 Jul;77(3):731-58. Review.

17.  Danforth E Jr, Burger A. The role of thyroid hormones in the control of energy expenditure. Clin Endocrinol Metab. 1984 Nov;13(3):581-95. Review.

18.  Schrauwen P, Hesselink M. UCP2 and UCP3 in muscle controlling body metabolism. J Exp Biol. 2002 Aug;205(Pt 15):2275-85. Review.

19.  Silva JE. The multiple contributions of thyroid hormone to heat production. J Clin Invest. 2001 Jul;108(1):35-7.

20.  Goglia F, Silvestri E, Lanni A. Thyroid hormones and mitochondria. Biosci Rep. 2002 Feb;22(1):17-32. Review.

21.  Goglia F, Moreno M, Lanni A. Action of thyroid hormones at the cellular level: the mitochondrial target. FEBS Lett. 1999 Jun 11;452(3):115-20. Review.

22.  Ribeiro MO, Carvalho SD, Schultz JJ, Chiellini G, Scanlan TS, Bianco AC, Brent GA. Thyroid hormone–sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform–specific. J Clin Invest. 2001 Jul;108(1):97-105.

23.  Beylot M, Riou JP, Bienvenu F, Mornex R. Increased ketonaemia in hyperthyroidism. Evidence for a beta-adrenergic mechanism. Diabetologia. 1980;19(6):505-10.

24.  Ostman J, Arner P, Bolinder J, Engfeldt P, Wennlund A. Regulation of lipolysis in hyperthyroidism. Int J Obes. 1981;5(6):665-70.

25.  Collins S, Cao W, Daniel KW, Dixon TM, Medvedev AV, Onuma H, Surwit R. Adrenoceptors, uncoupling proteins, and energy expenditure. Exp Biol Med (Maywood). 2001 Dec;226(11):982-90.

26.  Williams LT, Lefkowitz RJ, Watanabe AM, Hathaway DR, Besch HR Jr. Thyroid hormone regulation of beta-adrenergic receptor number. J Biol Chem. 1977 Apr 25;252(8):2787-9.

27.  Martin WH 3rd. Triiodothyronine, beta-adrenergic receptors, agonist responses, and exercise capacity. Ann Thorac Surg. 1993 Jul;56(1 Suppl):S24-34.

28.  Tsujimoto G, Hashimoto K, Hoffman BB. Effects of thyroid hormone on beta-adrenergic responsiveness of aging cardiovascular systems. Am J Physiol. 1987 Mar;252(3 Pt 2):H513-20.

29.  Richelsen B, Sorensen NS. Alpha 2- and beta-adrenergic receptor binding and action in gluteal adipocytes from patients with hypothyroidism and hyperthyroidism. Metabolism. 1987 Nov;36(11):1031-9.

30.  Wang JL, Chinookoswong N, Yin S, Shi ZQ. Calorigenic actions of leptin are additive to, but not dependent on, those of thyroid hormones. Am J Physiol Endocrinol Metab. 2000 Dec;279(6):E1278-85.

31.  Seidel A, Heldmaier G. Thyroid hormones affect the physiological availability of nonshivering thermogenesis. Pflugers Arch. 1982 May;393(3):283-5.

32.  Jones NL, Heigenhauser GJ, Kuksis A, Matsos CG, Sutton JR, Toews CJ. Fat metabolism in heavy exercise. Clin Sci (Lond). 1980 Dec;59(6):469-78.

33.  Romijn JA, Coyle EF, Sidossis LS, Zhang XJ, Wolfe RR. Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J Appl Physiol. 1995 Dec;79(6):1939-45.

34.  Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab. 1993;265:E380-E391.

35.  Martin WH 3rd, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, Rogers MA, King DS, Holloszy JO.  Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol. 1993;265:E708–14.

36.  Elayan IM, Winder WW. Effect of glucose infusion on muscle malonyl-CoA during exercise. J Appl Physiol. 1991 Apr;70(4):1495-9.

37.  Saddik M, Gamble J, Witters LA, Lopaschuk GD. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993 Dec 5;268(34):25836-45.

38.  McGarry JD, Mannaerts GP, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977 Jul;60(1):265-70.

39.  Robinson IN, Zammit VA. Sensitivity of carnitine acyltransferase I to malonly-CoA inhibition in isolated rat liver mitochondria is quantitatively related to hepatic malonyl-CoA concentration in vivo. Biochem J. 1982 Jul 15;206(1):177-9.

40.  McGarry JD, Mills SE, Long CS, Foster DW. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983 Jul 15;214(1):21-8.

41.  Sidossis LS, Gastaldelli A, Klein S, Wolfe RR. Regulation of plasma fatty acid oxidation during low- and high-intensity exercise. Am J Physiol. 1997;272:E1065–70.

42.  Mertens DJ, Rhind S, Berkhoff F, Dugmore D, Shek PN, Shephard RJ. Nutritional, immunologic and psychological responses to a 7250 km run. J Sports Med Phys Fitness. 1996 Jun;36(2):132-8.

43.  Wesche MF, Wiersinga WM. Relation between lean body mass and thyroid volume in competition rowers before and during intensive physical training. Horm Metab Res. 2001 Jul;33(7):423-7.

44.  Eliakim A, Brasel JA, Mohan S, Barstow TJ, Berman N, Cooper DM. Physical fitness, endurance training, and the growth hormone-insulin-like growth factor I system in adolescent females. J Clin Endocrinol Metab. 1996 Nov;81(11):3986-92.

45.  Bisschop PH, Sauerwein HP, Endert E, Romijn JA. Isocaloric carbohydrate deprivation induces protein catabolism despite a low T3-syndrome in healthy men. Clin Endocrinol (Oxf). 2001 Jan;54(1):75-80.

46.  Essig DA, Alderson NL, Ferguson MA, Bartoli WP, Durstine JL. Delayed effects of exercise on the plasma leptin concentration. Metabolism. 2000 Mar;49(3):395-9.

47.  Kanaley JA, Weltman JY, Pieper KS, Weltman A, Hartman ML. Cortisol and growth hormone responses to exercise at different times of day. J Clin Endocrinol Metab. 2001 Jun;86(6):2881-9.

48.  Duclos M, Gouarne C, Bonnemaison D. Acute and chronic effects of exercise on tissue sensitivity to glucocorticoids. J Appl Physiol. 2003 Mar;94(3):869-75.

49.  Duclos M, Corcuff JB, Pehourcq F, Tabarin A. Decreased pituitary sensitivity to glucocorticoids in endurance-trained men. Eur J Endocrinol. 2001 Apr;144(4):363-8.

50.  Heitkamp HC, Schulz H, Rocker K, Dickhuth HH. Endurance training in females: changes in beta-endorphin and ACTH. Int J Sports Med. 1998 May;19(4):260-4.

51.  Duclos M, Corcuff JB, Arsac L, Moreau-Gaudry F, Rashedi M, Roger P, Tabarin A, Manier G. Corticotroph axis sensitivity after exercise in endurance-trained athletes. Clin Endocrinol (Oxf). 1998 Apr;48(4):493-501.

52.  Tyndall GL, Kobe RW, Houmard JA. Cortisol, testosterone, and insulin action during intense swimming training in humans. Eur J Appl Physiol Occup Physiol. 1996;73(1-2):61-5.

53.  Vasankari TJ, Kujala UM, Heinonen OJ, Huhtaniemi IT. Effects of endurance training on hormonal responses to prolonged physical exercise in males. Acta Endocrinol (Copenh). 1993 Aug;129(2):109-13.

54.  Hoogeveen AR, Zonderland ML. Relationships between testosterone, cortisol and performance in professional cyclists. Int J Sports Med. 1996 Aug;17(6):423-8.

55.  Seidman DS, Dolev E, Deuster PA, Burstein R, Arnon R, Epstein Y. Androgenic response to long-term physical training in male subjects. Int J Sports Med. 1990 Dec;11(6):421-4.

56.  Duclos, M, Corcuff JB, Rashedi M, Fougere V, and Manier G. Trained versus untrained: different hypothalamo-pituitary adrenal axis responses to exercise recovery. Eur J Appl Physiol 75: 343-350, 1997.

57.  Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-Cadavid N, Arias J, Salehian B. Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab. 2003 Aug;285(2):E363-71.

58.  Cvijetić S, Grazio S, Gomzi M, Krapac L, Nemcić T, Uremović M, Bobić J. Muscle strength and bone density in patients with different rheumatic conditions: cross-sectional study. Croat Med J. 2011 Apr 15;52(2):164-70.

59.  Dixon WG, Lunt M, Pye SR, Reeve J, Felsenberg D, Silman AJ, O’Neill TW; European Prospective Osteoporosis Study Group. Low grip strength is associated with bone mineral density and vertebral fracture in women. Rheumatology (Oxford). 2005 May;44(5):642-6.

60.  Lekamwasam S, Weerarathna T, Rodrigo M, Arachchi WK, Munidasa D. Association between bone mineral density, lean mass, and fat mass among healthy middle-aged premenopausal women: a cross-sectional study in southern Sri Lanka. J Bone Miner Metab. 2009;27(1):83-8.

61.  Li S, Wagner R, Holm K, Lehotsky J, Zinaman MJ. Relationship between soft tissue body composition and bone mass in perimenopausal women. Maturitas. 2004 Feb 20;47(2):99-105.

62.  Salamone LM, Glynn N, Black D, Epstein RS, Palermo L, Meilahn E, Kuller LH, Cauley JA. Body composition and bone mineral density in premenopausal and early perimenopausal women. J Bone Miner Res. 1995 Nov;10(11):1762-8.

63.  Winters KM, Snow CM. Body composition predicts bone mineral density and balance in premenopausal women. J Womens Health Gend Based Med. 2000 Oct;9(8):865-72.

64.  Witzke KA, Snow CM. Lean body mass and leg power best predict bone mineral density in adolescent girls. Med Sci Sports Exerc. 1999 Nov;31(11):1558-63.

65.  Allison DB, Zannolli R, Faith MS, Heo M, Pietrobelli A, VanItallie TB, Pi-Sunyer FX, Heymsfield SB. Weight loss increases and fat loss decreases all-cause mortality rate: results from two independent cohort studies. Int J Obes Relat Metab Disord. 1999 Jun;23(6):603-11.

66.  Savard R, Despres JP, Marcotte M, Bouchard C. Endurance training and glucose conversion into triglycerides in human fat cells. J Appl Physiol. 1985 Jan;58(1):230-5.

67.  Viru A, Toode K, Eller A. Adipocyte responses to adrenaline and insulin in active and former sportsmen. Eur J Appl Physiol Occup Physiol. 1992;64(4):345-9.

68.  Hickner RC, Racette SB, Binder EF, Fisher JS, Kohrt WM. Effects of 10 days of endurance exercise training on the suppression of whole body and regional lipolysis by insulin. J Clin Endocrinol Metab. 2000 Apr;85(4):1498-504.

69.  Gommers A, Dehez-Delhaye M, Caucheteux D. Prolonged effects of training on adipose tissue glucose metabolism and insulin responsiveness in adult rats (author’s transl) Diabete Metab. 1981 Jun;7(2):121-6.

70.  Perreault L, Lavely JM, Kittelson JM, Horton TJ. Gender differences in lipoprotein lipase activity after acute exercise. Obes Res. 2004 Feb;12(2):241-9.

71.  Taskinen MR, Nikkila EA. Effect of acute vigorous exercise on lipoprotein lipase activity of adipose tissue and skeletal muscle in physically active men. Artery. 1980;6(6):471-83.

72.  Farese RV Jr, Yost TJ, Eckel RH. Tissue-specific regulation of lipoprotein lipase activity by insulin/glucose in normal-weight humans. Metabolism. 1991 Feb;40(2):214-6.

73.  Gregoire F, Genart C, Hauser N, Remacle C. Glucocorticoids induce a drastic inhibition of proliferation and stimulate differentiation of adult rat fat cell precursors. Exp Cell Res. 1991 Oct;196(2):270-8.

74.  Xu XF, Bjorntorp P. Effects of dexamethasone on multiplication and differentiation of rat adipose precursor cells. Exp Cell Res. 1990 Aug;189(2):247-52.

75.  Hentges EJ, Hausman GJ. Primary cultures of stromal-vascular cells from pig adipose tissue: the influence of glucocorticoids and insulin as inducers of adipocyte differentiation. Domest Anim Endocrinol. 1989 Jul;6(3):275-85.

76.  Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, Pfeiffer EF. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest. 1989 Nov;84(5):1663-70.

77.  Hauner H, Schmid P, Pfeiffer EF. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab. 1987 Apr;64(4):832-5.

78.  Ramsay TG, White ME, Wolverton CK. Glucocorticoids and the differentiation of porcine preadipocytes. J Anim Sci. 1989 Sep;67(9):2222-9.

79.  Bujalska IJ, Kumar S, Hewison M, Stewart PM. Differentiation of adipose stromal cells: the roles of glucocorticoids and 11beta-hydroxysteroid dehydrogenase. Endocrinology. 1999 Jul;140(7):3188-96.

80.  Nougues J, Reyne Y, Barenton B, Chery T, Garandel V, Soriano J. Differentiation of adipocyte precursors in a serum-free medium is influenced by glucocorticoids and endogenously produced insulin-like growth factor-I. Int J Obes Relat Metab Disord. 1993 Mar;17(3):159-67.

Posted in General.

Tagged with , , , , , , , , , , , , , , , , .


Common Paths to a Low Metabolism

Also see:
Common Paths to a High MetabolismCollection of FPS Charts
Collection of Ray Peat Quote Blogs by FPS
Master List – Ray Peat, PhD Interviews
Components of Daily Energy Expenditure
Body Temperature, Metabolism, and Obesity

This chart indicates commons ways in which cell metabolism is suppressed. More than one factor may be acting at once. Commonalities among the factors are lean tissue loss, thyroid suppression, blood sugar dysregulation, malnutrition, steroid hormone imbalance, and frequent activation of systems used to prolong life during actual starvation.

fps metabolism chart fps

Posted in General.

Tagged with , , , , .


The Glucose Song

Also see:
Comparison: Carbon Dioxide v. Lactic Acid
Cellular Energy Production – Aerobic Respiration – The Krebs Cycle
Carbon Dioxide Basics
Carbon Dioxide as an Antioxidant
Comparison: Oxidative Metabolism v. Glycolytic Metabolic
Promoters of Efficient v. Inefficient Metabolism
Trauma & Resuscitation: Toxicity of Lactated Ringer’s Solution
Altitude Sickness: Therapeutic Effects of Acetazolamide and Carbon Dioxide
Low CO2 in Hypothyroidism
Protective Altitude
Protect the Mitochondria
Lactate Paradox: High Altitude and Exercise
Altitude Improves T3 Levels
Protective Carbon Dioxide, Exercise, and Performance
Synergistic Effect of Creatine and Baking Soda on Performance
Ray Peat, PhD on Carbon Dioxide, Longevity, and Regeneration
Mitochondria & Mortality
Altitude and Mortality

Posted in General.

Tagged with , , , , , , , , , , , .


Ray Peat, PhD on Nitric Oxide

Also see:
LED Light Therapy Could Radically Change Our Treatment of Brain Disease
Collection of Ray Peat Quote Blogs by FPS
Collection of FPS Charts
Master List – Ray Peat, PhD Interviews
Protective Glycine
Thyroid peroxidase activity is inhibited by amino acids
Gelatin, Glycine, and Metabolism
Gelatin > Whey
Ray Peat, PhD on Endotoxin
Bowel Toxins Accelerate Aging
Ray Peat, PhD on the Benefits of the Raw Carrot
Protective Cascara Sagrada and Emodin
Fermentable Carbohydrates, Anxiety, Aggression
Protective Bamboo Shoots
Endotoxin-lipoprotein Hypothesis
Endotoxin: Poisoning from the Inside Out
Protection from Endotoxin
How does estrogen enhance endotoxin toxicity? Let me count the ways.
Intestinal Serotonin and Bone Loss
Carbon Dioxide Basics
Comparison: Carbon Dioxide v. Lactic Acid
Carbon Dioxide as an Antioxidant
Bohr Effect and Cells O2 Levels: Healthy vs. Sick People
Comparison: Oxidative Metabolism v. Glycolytic Metabolic
Promoters of Efficient v. Inefficient Metabolism
Altitude Sickness: Therapeutic Effects of Acetazolamide and Carbon Dioxide
Low CO2 in Hypothyroidism
Protective Altitude
Lactate Paradox: High Altitude and Exercise
Protective Carbon Dioxide, Exercise, and Performance
Benefits of Aspirin
Ray Peat, PhD on Aspirin
Sodium Deficiency in Pre-eclampsia
Role of Serotonin in Preeclampsia

“Prostaglandins, platelet activating factor, nitric oxide, peroxidase, lipases, histamine, serotonin, lactate, insulin, intracellular calcium, carbon dioxide, osmolarity, pH, and the redox environment are all relevant to cancer, and are affected systemically and locally by estrogen and progesterone in generally opposing ways.”

“And, obviously, drugs that are intended to increased the effects of nitric oxide (asparagine, zildenafil/Viagra, minoxidil/Rogaine) and acetylcholine (bethanechol, benzpyrinium, etc.) should be avoided.”

“The basic control of blood flow in the brain is the result of the relaxation of the wall of blood vessels in the presence of carbon dioxide, which is produced in proportion to the rate at which oxygen and glucose are being metabolically combined by active cells. In the inability of cells to produce CO2 at a normal rate, nitric oxide synthesis in blood vessels can cause them to dilate. The mechanism of relaxation by NO is very different, however, involving the inhibition of mitochondrial energy production (Barron, et al., 2001). Situations that favor the production and retention of larger amounts of carbon dioxide in the tissues are likely to reduce the basic “tone” of the parasympathetic nervous system, and there is less need for additional vasodilation.”

“Nitric oxide is increasingly seen as an important factor in nerve degeneration (Doherty, 2011). Nitric oxide activates processes (Obukuro, et al., 2013) that can lead to cell death. Inhibition on the production of nitric oxide protects again various kinds of dementia (Sharma & Sharma, 2013, Sharma & Singh, 2013). Brain trauma cases large increase in nitric oxide formation, and blocking its synthesis improves recovery (Huttenmann, et al., 2008); Gahn, et al., 2006).

Organophosphates increase nitric oxide formation, and the protective anticholinergic drugs such as atropine reduce it (Chang, et al., 2001; Kim, et al., 1997). Stress, including fear (Campos., et al., 2013) and isolation (Zlatokovic & Filipovic, 2013) can activate the formation of nitric oxide, and various mediators of inflammation also activate it. The nitric oxide in a person’s exhaled breath can be used to diagnose some diseases, and it probably reflects the level of their emotional well-being.”

“Niacianamide, like progesterone, inhibits the production of nitric oxide, and also like progesterone, it improves recovery from brain injury. (Hoane, et al., 2008).”

“There is a lot of talk about melatonin’s function as an antioxidant, but, like so many other “antioxidants,” melatonin can act as a pro-oxidant at physiologically relevant concentrations; some studies have found that it, like estrogen, increases the activity of the pro-oxidative free radical nitric oxide (which acts like melatonin on pigment cells, causing them to lighten). The promoters of estrogen are also making claims that estrogen is a protective antioxidant, though that isn’t true of physiological concentrations of the estrogens, which can catalyze intense oxidations. The market culture seems to guide most research in these substances.”

“When doctors are talking about diseases of the heart and circulatory system, it’s common for them to say that estrogen is protective, because it causes blood vessels to relax and dilate, improving circulation and preventing hypertension. The fact that estrogen increases the formation of nitric oxide, a vasodilator, is often mentioned as one of its beneficial effects. But in the case of hot flashes, dilation of the blood vessels is exactly the problem, and estrogen is commonly prescribed to prevent the episodic dilation of blood vessels that constitutes the hot flash. Nitric oxide increases in women in association with the menopause (Watanabe, et al., 2000), and it is increased by inflammation, and hot flushes are associated with various mediators of inflammation, but, as far as I can tell, no one has measured the production of nitric oxide during a hot flash. Inhibitors of nitric oxide formation reduce vasodilation during hot flushes (Hubing, et al., 2010).”

“The exhaled breath is being used to diagnose inflammatory lung disease, since so many of the mediators of inflammation are volatile, but systemic diseases such as cancer and arthritis, and relatively minor stress can be detected by changes in the chemicals found in the breath. Polyunsaturated fats and their breakdown products-aldehydes, prostaglandins, isoprostanes, hydrocarbons, and free radicals–and carbon monoxide, nitric oxide, nitrite, and hydrogen peroxide are increased in the breath by most stresses.

Both proline and glycine (which are major amino acids in gelatin) are very protective for the liver, increasing albumin, and stopping oxidative damage.”

“Although fish oil interferes with prostaglandin synthesis, it can contribute to the formation of PAF (Triggiani, et aI., 1990), and other mediators of inflammation, energy suppression, and free radicals, including nitric oxide (Nishimura, et aI., 2000; Hirafuji, et aI., 2002). Since the fish oils are commonly studied by comparing the supplemented animals with “control” animals receiving soy oil, corn oil, or safflower oil, which are strongly pro-inflammatory and broadly toxic, it isn’t surprising that their effects usually seem favorable. But when they are compared with saturated fats (as I mentioned in the “Fats and degeneration” newsletter) or with a fat free diet, their effects are seen to be pro-inflammatory and toxic.”

“Although caffeine, if it’s combined with hypoglycemia and stress, will increase lipolysis and free fatty acids, several of the methylxanthines, including caffeine, theophylline, and pentoxifylline, can protect against capillary leakage, probably by a variety of antiinflammatory actions, including inhibition of nitric oxide synthesis (Bereta, et al., 1994).”

“The unsaturated fats and estrogen contribute to the increased release of serotonin and nitric oxide (NO). Nitric oxide is produced during inflammation, and, like ethane, can be detected in the breath when the lungs are inflamed. Nitric oxide, as a pro-inflammatory free radical, stimulates the peroxidation of the unsaturated fats. Both NO and serotonin inhibit mitochondrial respiration, shifting metabolism toward glycolysis.”

“In women with preeclampsia, there are abnormally high levels of serotonin, nitric oxide, and lipid peroxidation.”

“In women with preeclampsia, there are abnormally high levels of serotonin, nitric oxide, and lipid peroxidation. In a study of more than 3000 women (Clausen, et al., 2001), the consumption of sugar and polyunsaturated fat was strongly associated with the development of preeclampsia. Women who don’t eat enough protein are likely to substitute sugar and fat for the absent protein, so this study is consistent with Brewer’s work, but it’s very important to see that it was polyunsaturated fats, not saturated or monounsaturated fats, that caused the problem. Eclampsia (pregnancy-related seizures) and preeclampsia are caused by oxidative stress, produced by the excessive unstable fats. The increased serotonin and nitric oxide are exactly what would be expected to result from the high consumption of polyunsaturated fats, especially with a deficiency of protein in the diet.”

“Yaffe, et al., in associating depression and osteoporosis with dementia, are arguing that estrogen deficiency is the cause of all three conditions. They offer some hypothetical mechanisms for how estrogen might prevent Alzheimer’s disease. Observing that brain cells die in people with Alzheimer’s disease, they mention that estrogen stimulates “dendritic sprouting” in brain cells, as if that could compensate for the loss of cells (it doesn’t). They observe that estrogen delivers more tryptophan to the brain, increasing the production of serotonin, and that it inhibits the monoamine oxidases and other enzymes that inactivate transmitter substances, increasing the activity of adrenaline, serotonin, and other transmitter substances. They suggest that increased circulation caused by estrogen might protect the brain. Here, Yaffe, et al., have invoked the serotonin myth and other myths, including the nitric oxide myth, to substantiate the estrogen myth.

Serotonin doesn’t “cure depression,” and both serotonin and nitric oxide impair circulation and are toxic to brain cells. Both of them poison mitochondrial respiration. Estrogen increases the viscosity of blood, and impairs circulation and oxygenation in many other ways.”

“Estrogen and PUFA create insulin resistance, and the resulting state of “diabetes” and stress de-energizes tissues, with the mitochondria that are damaged by unsaturated fatty acids, nitric oxide, tumor necrosis factor (TNT), serotonin, etc., failing to meet the tissues’ energy needs. Stress, endotoxinemia, and increased estrogen tend to activate TNF, which has a role in brain degenerative diseases and osteoporosis and multiple organ failure. Much research has focussed on a search for a single substance that is responsible for the inflammatory conditions of Alzheimer’s disease, but inflammation and aging are processes that involve many causes and mediators, with each individual’s history causing variations in the details.”

“Nitric oxide, a third cultic substance along with serotonin and estrogen, is invoked as a normalizer of brain circulation and protector of nerve cells from peroxidation. Whether a substance is an antioxidant or pro-oxidant depends on its environment, and both nitric oxide and estrogen are pro-oxidants, promoters of lipid peroxidation and other forms of cell damage, under a variety of physiological situations.”

“To reverse this process, it’s necessary to avoid doing the things that caused the problem to develop. The accumulation of heavy metals and of the unstable unsaturated fats (linoleic, linolenic, and arachidonic acids) can be slowed or reversed by careful dietary choices. The calorie restricted diets that slow the aging process reduce the accumulation of the unstable fats and the heavy metals. Vitamin E reduces the vascular leakiness and the free radical peroxidation that are so closely involved in fibrosis. Since serotonin and nitric oxide are involved in these processes, they should be minimized by keeping carbon dioxide production high (by optimizing thyroid function), and by eating protein that have a safe balance of the amino acids. Too much arginine increases nitric oxide formation, and too much tryptophan increases serotonin production. Too much glutamic acid, aspartic acid, and cysteine can be directly excitotoxic, and the metabolites of cysteine include proinfiammatory homocysteine, which can disrupt collagen structure.”

“Energy depletion, free-radical generation, and gene mutations are produced by estrogen and by the nitric oxide (NO) promoted by estrogen.”

“Ammonia, like estrogen, promotes the excitotoxic processes, activating the production of nitric oxide (NO), and stimulating the glutamate receptors, sometimes causing seizures, and if prolonged, causing stupor or coma. But it always activates the pituitary, and in other tissues, the production of free radicals causes molecular tissue damage. The stressors produced by estrogen, for example NO and growth hormone, activate the enzyme aromatase, which synthesizes estrogen, in just one of the many vicious circles. Growth hormone tends to increase ammonia levels.

Estrogen is just one of the intrinsic excitatory substances, which are produced by stress, and which participate in self-stimulating loops. Ammonia and nitric oxide are two of the most pervasive endogenous excitants and toxins. NO [nitric oxide] is emerging as an important endogenously-derived neurotoxin” (Dawson and Dawson, 1995).

Ammonia, like nitric oxide, inhibits respiration, and can increase the Crabtree effect (with aerobic glycolysis stimulated by increased glucose, inhibiting respiration). This suggests an important role for it in cancer in general, and especially in liver cancer. In the uncontrolled glycolysis of cancer, ammonia can be used to form amino acids from the lactate and pyruvate produced by glycolysis, supporting growth of the tumor at the expense of the normal tissues that are producing ammonia by protein degradation.”

“Ammonia has also been found to be increased during migraine attacks. I suspect that progesterone’s sometimes dramatic effect on migraine involves ammonia and energy metabolism.

Ammonia disturbs carbon dioxide’s regulation of brain circulation, and when ammonia is “detoxified” into glutamine (though glutamine is still toxic in excess) ATP is consumed, leading to dysregulation of vascular smooth muscle. Progesterone’s ability to stop the local excitation of nerve cells spares ATP. It seems likely that nitric oxide, the production of which is inhibited by progesterone, is also involved in the vasodilation and energy depletion.”

“Lactic acid, produced by splitting glucose to pyruvic acid followed by its reduction, is associated with calcium uptake and nitric oxide production, depletes energy, contributing to cell death.”

“Since the presence of lactate is so commonly considered to be a normal and adaptive response to stress, the shut-down of respiration in the presence of lactate is generally considered to be caused by something else, with lactate being seen as an effect rather than a cause. Nitric oside and calcium exces I have been identified as the main endogenous antirespiratory factors in stress, though free unsaturated fatty acids are clearly involved, too. However, glycolysis and the products of glycolysis, lactate and pyruvate, have been found to have a causal role in the suppression of respiration; it is both a cause and a consequence of the respiratory shutdown, though nitric oxide, calcium, and fatty acids are closely involved.”

“Glycolysis produces both pyruvate and lactate, and excessive pyruvate produces almost the same inhibitory effect as lactate; since the Crabtree effect involves nitric oxide and fatty acids as well as calcium, I think it is reasonable to look for the simplest sort of explanation, instead of trying to experimentally trace all the possible interactions of these substances; a simple physical competition between the products of glycolysis and carbon dioxide, for the binding sites, such as lysine, that would amount to a phase change in the mitochondrion. Glucose, and apparently glycolysis, are required for the production of nitric oxide, as for the accumulation of calcium, at least in some types of cell, and these coordinated changes, which lower energy production, could be produced by a reduction in carbon dioxide, in a physical change even more basic than the energy level represented by ATP The use of Krebs cycle substances in the synthesis of amino acids, and other products, would decrease the formation of CO2, creating a situation in which the system would have two possible states, one, the glycolytic stress state, and the other, the carbon dioxide producing energy-efficient state.”

“But they identified several proteins that estrogen stuck to: ATPase (regulating energy and salt and water), and GAPDH, the rate controlling enzyme of glycolysis. Estrogen activates this enzyme, and physiologically estrogen activates the glycolytic pathway, increasing the production of lactic acid as it shifts metabolism away from mitochondrial oxidation, lowering the cell’s ATP production, and shifts the use of oxygen functions, such as producing nitric oxide, the free radical which is a common mediator for all the harmful forms of radiation, and for oxygen deprivation.”

“Estrogen, like radiation and oxygen deprivation, increases formation of the nitric oxide (NO) free radical, which has so many harmful effects, ranging from damaging DNA to poisoning mitochondria. One of the consequences of increasing NO formation (and estrogen) is the activation of an enzyme (heme oxygenase) which produces carbon monoxide, in the process of breaking down the heme molecule (which is needed for respiratory enzymes, among other essential functions). In previous newsletters I have discussed the reasons for thinking that endogenously produced carbon monoxide could explain the gradual development of cancer, since it stabilizes cells in the primitive anti-respiratory condition.”

“Estrogen, growth hormone, and nitric oxide, which tend to work as a system, along with free fatty acids, all increase the permeability of blood vessels. The leaking of albumin into the urine, which is characteristic of diabetes, is promoted by GH. In diabetes and GH treatment, the basement membrane, the jelly-like material that forms a foundation for capillary cells, is thickened. The reason for this isn’t known, but it could be a compensatory”anti-Ieak” response tending to reduce the leakage of proteins and fats.”

“Carbon monoxide, and other substances such as nitric oxide which also function as respiratory poisons, suppress energy production by the mitochondria, and this activates enzymes which cut DNA molecules, producing either DNA rearrangement, or apoptotic cell death.”

“This would include antiestrogen regimes, antiinflammatory and antihistamine factors (histamine interacts closely with nitric oxide and carbon monoxide), adequate nutrition, carbon dioxide, and specific anti-carbon monoxide therapies (such as light, alcohol, and possibly the minerals which convert porphyrin into compounds that inhibit the production of carbon monoxide), and methods to decrease nitric oxide formation and to restrain cortisol production, since these promote the formation of carbon monoxide. One of the most interesting approaches to inhibiting carbon monoxide production is to use vitamin B12, as hydroxocobalamin, as an antidote to nitric oxide, preventing the nitric oxide from stimulating the formation of heme oxygenase.

Wherever carbon monoxide mediates a biological malfunction, as in acquired immunodeficiency, Alzheimer’s disease, and cancer, vitamin B12 seems to have a place as a detoxicant.”

“Estrogen increases most of the mediators of inflammation, which are generally inhibited by progesterone. Estrogen also shifts many processes toward excitation, and it’s often hard to distinguish the mediators of inflammation from the mediators of excitation. Free polyunsaturated fatty acids, for example, which are increased under the influence of estrogen (or exercise, diabetes, nighttime, aging, histamine, parasympathetic dominance, etc.), produce both inflammation and excitation. Associated with the processes of inflammation and excitation is the tendency of estrogen and other inflammatory mediators, such as nitric oxide and serotonin, to impair mitochondrial respiration. This effect on the cells’ energy production is probably responsible for many of the things that occur in asthma, such as edema and smooth muscle contraction. Acute or chronic interference with mitochondrial respiration can produce a tremendous variety of symptoms, depending on the location, and the degree of the energy deprivation. Exercise, probably acting through some of the same mediators, also impairs mitochondrial respiration.”

“Calcium, which is released into the cytoplasm by the excitotoxins, triggers the release of fatty acids, the activation of nerve and muscle, and the release of a variety of transmitter substances, in a cascade of excitatory processes, but at the same time, it tends to impair mitochondrial metabolism, and progressively tends to accumulate in mitochondria, leading to their calcification death, which is also promoted by the antirespiratory effects of the unsaturated fatty acids and the lipid peroxidation they promote. Iron and calcium both tend to accumulate with aging or stress, and both promote excitatory damage; bicarbonate contributes to keeping iron in its inactive state, and probably has a similar effect against a broad spectrum of excitatory substances. Histamine release, nitric oxide, and carbon monoxide are broadly involved in excitotoxic damage, and carbon dioxide tends to be protective against these, too.”

“The PUFA (especially the omega -3 fatty acids) spontaneously decompose into a variety of toxins, and arachidonate is also enzymically converted into prostaglandins, some of which exacerbate the excitatory damage (pepicelli, et al., 2005); aspirin’s neuroprotective effect (Riepe, et aI., 1997) is probably partly caused by inhibiting prostaglandin synthesis. Besides the prostaglandins, other mediators of inflammation including nitric oxide and interleukins are produced by excessive excitation, as cells lose their ability to retain magnesium, and to control excitatory intracellular calcium.

Nitric oxide, associated with unbalanced excitation, is involved in the nerve damage of epilepsy, amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease. An energy deficit increases excitation and cellular calcium uptake, increasing nitric oxide synthesis (Schulz, et aI., 1997). Nitric oxide increases the ratio of glutamate to GABA (“the excitotoxicity index”), (Demchenko & Piantadosi, 2006), while lowering mitochondrial energy production.

The PUFA increase the susceptibility to excessive serotonin in the nervous system. One of the functions of the GABA system is to inhibit serotonergic nerves (Calogero, et aI., 1988; Kaura, et aI., 2007). Eating a diet with a very low tryptophan content, and lacking PUFA, can support that function of the GABA system. The tea amino acid, theanine, suppresses serotonin by supporting the effects of GABA. Three of the major types of antidepressant also protect against glutamate/aspartate-induced nitric oxide formation and nerve cell damage (Li, et. al., 2006).”

“It is antagonistic to the GABA system, and promotes the action of excitatory transmitters, and increases formation of nitric oxide and prostaglandins. In cancers that are promoted by estrogen, GABA, like progesterone, inhibits cell division. It is an antiproliferative agent in normal tissues, too, opposing estrogen’s effects and supporting progesterone’s.”

“Stress increases nitric oxide, and an excess of that poisons mitochondrial energy production, making stress worse. The right amount of coffee inhibits nitric oxide and so improves energy efficiency. Nitric oxide increases parathyroid hormone and aldosterone, which increase blood pressure. Vitamin D and vitamin K lower those.”

“Bacterial endotoxin increases serotonin release from the intestine, and increases its synthesis in the brain (Nolan, et al., 2000) and liver (Bado, 1983). It also stimulates its release from platelets, and reduces the lungs’ ability to destroy it. The formation of serotonin in the intestine is also stimulated by the lactate, propionate and butyrate that are formed by bacteria fermenting fiber and starch, but these bacteria also produce endotoxin. The inflammation-producing effects of lactate, serotonin, and endotoxin are overlapping, additive, and sometimes synergistic, along with histamine, nitric oxide, bradykinin, and the cytokines.”

“Chronically elevated cortisol is commonly seen in depressed people, but giving a supplement of cortisol is effective in relieving depression. Both cortisol and the pituitary corticotropic hormone that stimulates its production, ACTH, have some antidepressant effects, and they inhibit the hypothalamic corticotropin release honnone, CRH. CRH is more directly associated with depression than cortisol is, and it by itself activates many inflammatory processes, including the release of histamine, cytokines, and nitric oxide. CRH is promoted in the hypothalamus (and in many other tissues) by inflammation, endotoxin, serotonin, interleukins, and prostaglandins, but also by the perception of unavoidable difficulties.”

“A localized stress or irritation at first produces vasodilation that increases the delivery of blood to the tissues, allowing them to compensate for the stress by producing more energy. Some of the agents that produce vasodilation also reduce oxygen consumption (nitric oxide, for example), helping to restore a normal oxygen tension to the tissue. Hypoxia itself (produced by factors other than irritation) can induce vasodilation, and if prolonged sufficiently, tends to produce neovascularization and fibrosis.

Sensitivity to the harmful effects of light can be increased by some drugs and by excess porphyrins produced in the body (and by the porphyrin precursor, delta-amino levulinic acid), leading to rosacea, so those factors should be considered, but too often alcohol (which can cause porphyrin to increase) is blamed for rosacea and rhinophyma, without justification. There are many ways in which poor health can increase light sensitivity. Some types of excitation produced by metabolites (or by the failure of inhibitory metabolites) can produce vasodilation, involving the release of nitric oxide (Cardenas, et al., 2000), setting off a series of potentially pathological reactions, including fibrosis. The nitric oxide increases glycolysis while lowering energy production. The excitatory metabolite glutamate, and nitric oxide, are both inhibited by aspirin (Moro, et al., 2000).”

“The excess excitation that produces nitric oxide and lactic acid lowers the energy production of vascular cells, possibly enough to lower their contractile ability (Geng, et al., 1992), causing vasodilation. When flushing is caused by a mismatch between energy supply and energy demand, caffeine can decrease the vasodilation (Eikvar & Kirkebeen, 1998), but when vasodilation is caused more physiologically by carbon dioxide, caffeine doesn’t have that effect (Meno, et al., 2005). In a study in which drinking hot water or coffee was compared with drinking room temperature coffee or caffeine, it was found that the hot liquids caused flushing, but cool coffee and caffeine didn’t.”

“Estrogen’s most immediate effect on cells is to alter their oxidative metabolism. It promotes the formation of lactic acid. In the long run, it increases the nutritional requirements for the B vitamins, as well as for other vitamins. It also increases the formation of aminolevulinic acid, a precursor of porphyrin, and increases the risk of excess porphyrin increasing light sensitivity. Both aminolevulinic acid and excess porphyrins are toxic to mitochondria, apart from their photosensitizing actions. Nitric oxide, glutamate, and cortisol all tend to be increased by estrogen.

Veins and capillaries are highly sensitive to estrogen, and women are more likely than men to have varicose veins, spider veins, leaky capillaries, and other vascular problems besides rosacea. Estrogen can promote angioneogenesis by a variety of mechanisms, including nitric oxide (Johnson, et al., 2006). “Estrogens potentiate corticosteroid effects on the skin such as striae, telangiectasiae, and rosacea dermatitis” (Zaun, 1981). Early forms of oral contraceptives, high in estrogen, were found to increase acne rosacea more than three-fold (prenen & Ledoux-Corbusier, 1971).

Lactic acid, produced under the influence of estrogen, nitric oxide, or other problems of energy formation, besides causing vasodilation, also stimulates the growth of fibroblasts. Oxygen deprivation, or damage to mitochondria, will increase lactic acid formation, and so it will immediately cause vasodilation, and if the problem is prolonged, new blood vessels will grow, and fibrous connective tissue will increase. Estrogen stimulates collagen synthesis, and it has been associated with a variety of inflammatory and fibrotic conditions (for example, Cutolo, et al., 2003. Payne, et al., 2006, suggest the use of the anti-estrogen, tamoxifen, to treat rhinophyma.)”

“Lactate, glutamate, ammonium, nitric oxide, quinolinate, estrogen, histamine, aminolevulinate, porphyrin, ultraviolet light, polyunsaturated fatty acids and endotoxin contribute to excitatory and excitotoxic processes, vasodilation, angioneogenesis, and fibrosis.”

“PTH (like estrogen) causes mast cells to release promoters of inflammation, including histamine and serotonin. Serotonin and nitric oxide contribute to increasing PTH secretion.”

“Multiple sclerosis relapses essentially occur at times of high PTH, and remissions consistently occur at times of low PTH (Soilu-Hfuminen, et al., 2008). PTH increases the activity of nitric oxide synthase, and nitric oxide is a factor in the vascular leakiness that is so important in MS.”

“Substances such as PTH, nitric oxide, serotonin, cortisol, aldosterone, estrogen, thyroid
stimulating hormone, and prolactin have regulatory and adaptive functions that are essential, but that ideally should act only intermittently, producing changes that are needed momentarily. When the environment is too stressful, or when nutrition isn’t adequate, the organism may be unable to mobilize the opposing and complementary substances to stop their actions.”

“Endotoxin and estrogen interact in many interesting and potentially deadly ways. Both of them activate many of the same alarm systems, including phospholipases, nitric oxide synthase, tumor necrosis factor (TNF), interleukins (including IL-6, according to Bengtsson, et aI., 2004), and the enzymes that form prostaglandins from polyunsaturated fatty acids. Estrogen makes the toxic-mediator-producing cells in the liver (Kupffer cells) hypersensitive to LPS–15 times more sensitive than normal (Ikejima, et a!., 1998).”

“Estrogen (like endotoxin) activates nuclear factor kappa-B (Shyamala and Guiot, 1992; Hamilton, et a!., 2003), which activates cells to produce TNF, nitric oxide, prostaglandins, and interleukins. A long series of observations have indicated that estrogen’s main effects begin with redox changes in the mitochondria, and recent evidence (Felty and Roy, 2005) shows that oxidative free radicals produced in the mitochondria by estrogen induce NF kappa-B. Old age is associated with increased activity of NF kappa-B.”

“Nitric oxide, which is promoted by resveratrol, according to numerous publications (Klinge, et al., 2008; Gresele, et al. 2008; Gan, et al., 2009), and estrogens (acting partly through nitric oxide), including some phytoestrogens, cause chromosomal damage (Banerjee, et al., 1994; Kulling, et al., 1999) which contributes to cancer and possibly to birth defects. Nitric oxide has been proposed to be a major factor in causing the degenerative diseases of aging.”

“Niacinamide protects mitochondrial respiration from many of the age-related factors that can damage mitochondria and decrease energy production. Lipopolysaccharide, the bacterial endotoxin, increases the production of the free radical nitric oxide, leading to the secretion of inflammatory mediators and the suppression of energy production by the mitochondria. These effects are blocked by niacinamide (Fukuzawa, et al., 1997). Calorie restriction also protects mitochondrial respiration, in yeasts (Lin, et al., 2002) and rats (Broderick, et al., 2002)”

“In an experiment with human keratinocytes in vitro, resveratrol had the opposite effect, reducing their ability to divide (Blander, et al., 2009). By the definitions of “aging” used by the advocates of the rate-of-living theory, this experiment suggests that resveratrol causes premature aging. Estrogen has a similar effect on keratinocytes. Resveratrol, nitric oxide, and estrogen, unlike niacinamide, suppress mitochondrial respiration. Resveratrol inhibits the formation of progesterone (Chen, et al., 2007), which is synthesized in mitochondria.”

“One factor involved in the increased production of TSH in hypothyroidism is that the low metabolic rate allows estrogen to accumulate, leading to increased serotonin production. Serotonin stimulates both TSH and prolactin. Serotonin and prolactin both happen to cause bone loss. They increase nitric oxide, which inhibits mitochondrial respiration. Serotonin increases a cytokine, osteoprotegerin, that inhibits osteoclasts, reducing bone turnover. However, serotonin’s other antimetabolic effects outweigh that effect, and it is a major factor in causing osteoporosis. The antimetabolic factors that slow the rate of living also slow the rate of renewal, and on balance lead to tissue atrophy, fibrosis, inflammation, and degeneration. Several decades after estrogen-induced prolactin might have been recognized as a cause of bone loss in aging, a few people are mentioning the mechanism in specific situations (Homer, 2009; Homer, et al., 2007).”

“In the presence of bacterial endotoxin, respiratory energy production fails in the cells lining the intestine. Nitric oxide is probably the main mediator of this effect.”

“Since the cells that form the barrier begin to form regulatory substances such as nitric oxide when they are exposed to endotoxin, it is clear that major metabolic and energetic changes coincide in the cell with the observed leakiness. Permeability varies with the nature of the substance, its oil and water solubility, and the direction of its movement, arguing clearly that it isn’t a matter of mere holes between cells.

Besides endotoxin, estrogen, vibrational injury, radiation, aging, cold, and hypoosmolarity, increase NO synthesis and release, and increase cellular permeabilities throughout the body.

Estrogen excess (relative to progesterone and androgens), as in pregnancy, stress, and aging, reduces intestinal motility, probably by increasing nitric oxide production. The anthraquinones inhibit the formation of nitric oxide, which is constantly being promoted by endotoxin.”

“Emodin inhibits the formation of nitric oxide, increases mitochondrial respiration, inhibits angiogenesis and invasiveness, inhibits fatty acid synthase (Zhang, et al., 2002), inhibits HER-2 neu and tyrosine phosphorylases (Zhang, et al., 1995, 1999), and promotes cellular differentiation in cancer cells (Zhang, et al., 1995). The anthraquinones, like other antiinflammatory substances, reduce leakage from blood vessels, but they also reduce the absorption of water from the intestine. Reduced water absorption can be seen in a slight
shrinkage of cells in certain circumstances, and is probably related to their promotion of cellular differentiation.”

“Zelnorm was said to “act like serotonin.” Serotonin slows metabolism, reduces oxygen consumption, and increases free radicals such as superoxide and nitric oxide; the production of reactive oxygen species is probably an essential part of its normal function. Emodin has an opposing effect, increasing the metabolic rate. It increases mitochondrial oxygen consumption and ATP synthesis, while decreasing oxidative damage (Du and Ko, 2005, 2006; Huang, et al., 1995).”

“When destabilizing factors are transmitted from cells that were damaged, for example by irradiation, to other cells that weren’t exposed to the radiation, but which then undergo changes similar to those of the exposed cells, these changes are called “bystander effects.” Besides being transmitted from one part of the body to another, for example from the head to the reproductive organs, these effects can even be transmitted from one animal to another, for example from fish exposed to radiation to other fish which enter water after the exposed fish have been in it (Mothersill, et aI., 2007). Serotonin has been identified as one of the substances transmitting the effect (poon, et aI., 2007). In some situations, the transmitted factors include nitric oxide and “persistent” free radicals (Harada, et al. 2008).”

“Lactic acid activates the other major mediators of inflammation, including prostaglandins (made from PDFA), free fatty acids (including arachidonate, that forms prostaglandins; Schoonderwoerd, et al., 1989), nitric oxide, carbon monoxide, proteolytic enzymes that degrade the extracellular matrix, TNF (Jensen, et al.,· 1990), hypoxia inducible factor (Lu, et al., 2002; McFate, et al., 2008), interferon, and interleukins. Arachidonic acid itself can increase lactate production (Meroni, et aI., 2003). TNFalpha and interferon gamma activate lactic acid production by increasing prostaglandins (Taylor, et al., 1992).

Most of the present information about cancer cells’ behavior, such as reactions to radiation and chemical toxins, has been based on the study of cells in culture dishes. For more than 70 years, it was generally believed that radiation caused mutations and cancer by directly modifying the cells’ genetic material. Then, it was discovered that fresh cells that were added to a dish of irradiated cells also developed mutations. The radiation causes cells to emit excitatory, inflammatory, substances such as serotonin and nitric oxide, which injure the cells that are later put near them.”

“We are susceptible to many things that interfere with energy production-the substitution of iron for copper in the respiratory enzyme, the absorption of endotoxin, the accumulation of PUFA, a deficiency of thyroid hormone, the formation of increased amounts of nitric oxide, serotonin, and histamine, etc. Different environments will condition the way the defensive mechanisms of inflammation are produced.”

“When it was discovered that the endothelial relaxing factor was nitric oxide, a new drug business came into being. Nitroglycerine had been in use for decades to open blood vessels, and, ignoring the role of nitrite vasodilators in the acquired immunodeficiency syndrome, new drugs were developed to increase the production of nitric oxide. The estrogen industry began directing research toward the idea that estrogen works through nitric oxide to “improve” the function of blood vessels and the heart.”

“More recently, it has been discovered that progesterone inhibits the expression of the enzyme nitric oxide synthase while estrogen stimulates its expression. At the time of ovulation, when estrogen is high, a woman breathes out 50% more nitric oxide (“NO”) than’ men do, but at other times, under the influence of increased progesterone and thyroid, and reduced estrogen, women exhale much less NO than men do. (Nitric oxide is a free radical, and it decomposes’ into other toxic compounds, including the free radical peroxyrutnle} which damages cells, including the blood vessels. brain, and heart. Carbon dioxide tends to inhibit the production of peioxynitrile.)”

If nitric oxide produced under the influence of estrogen were important in preventing cardiovascular disease, then men’s larger production of nitric oxide would give them greater protection than women have.

From more realistic perspectives, nitric oxide is being considered as a cause of aging, especially brain aging. Nitric oxide interacts with unsaturated fats to reduce oxygen use, damage mitochondria, and cause edema.”

“Progesterone’s effects are antagonistic to estrogen’s: Progesterone decreases the formation of nitric oxide, decreasing edema; it strengthens the heart beat, by improving venous return and increasing stroke volume, but at the same time it reduces peripheral resistance by relaxing arteries (by inhibiting calcium entry but also by other effects and independently of the endothelium) and decreasing edematous swelling.

The effects of progesterone on the heart and blood vessels are paralleled by those of carbon dioxide: Increased carbon dioxide increases perfusion of the heart muscle, increases its stroke volume, and reduces peripheral resistance. The physical and chemical properties of carbon dioxide that I have written about previously include protective anti-excitatory and energy-sustaining functions that explain these effects. Since these effects have been known for many years, I think it is obvious that the obsessive interest in explaining these functions in terms of other molecules, such as nitric oxide, is motivated by the desire for new drugs, not by a desire to understand the physiology with which the researchers are pretending to deal.”

“An extracellular phosphorylated fructose metabolite, diphosphoglycerate, has an essential regulatory effect in the blood; another fructose metabolite, fructose diphosphate, can reduce mast cell histamine release and protect against oxidative and hypoxic injury and endotoxic shock, and it reduces the expression of the inflammation mediators TNF -alpha, I L-6, nitric oxide synthase, and the activation of NF-kappaB, among other protective effects, and its therapeutic value is known, but its relation to dietary sugars hasn’t been investigated.”

“Besides the direct effects of endotoxin and fatty acids, endotoxin’s activation of prostaglandins and nitric oxide contribute to the metabolic shift toward inflammation and away from efficient oxidation of glucose.”

Posted in General.

Tagged with , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , .


Thigh and Buttock Fat Depots more Unsaturated than Abdominal Fat Depots

Also see:
Toxicity of Stored PUFA
Dietary PUFA Reflected in Human Subcutaneous Fat Tissue
Israeli Paradox: High Omega -6 Diet Promotes Disease
PUFA Accumulation & Aging
PUFA Promote Stress Response; Saturated Fats Suppress Stress Response
Belly Fat, Cortisol, and Stress

Am J Clin Nutr. 1989 Aug;50(2):288-91.
Fatty acid composition of adipose tissue in humans: differences between subcutaneous sites.
Malcom GT, Bhattacharyya AK, Velez-Duran M, Guzman MA, Oalmann MC, Strong JP.
We compared the fatty acid composition of adipose tissue from three different sites, one deep-seated site (perirenal) and two subcutaneous sites (abdominal and buttock), in 143 autopsied adult humans aged 24-61 y. The proportion of saturated fatty acids was highest in the perirenal adipose tissue and lowest in buttock adipose tissue. The proportions of monounsaturated fatty acids in the three sites were in the reverse order. Linoleic and linolenic acids were similar in the three adipose-tissue sites, an important finding for those concerned about the essential fatty acids, which are solely derived from the diet. The results clearly show that the fatty acid composition of the two subcutaneous fat depots differ significantly. We conclude that abdominal fat is more saturated than buttock fat.

Eur J Clin Nutr. 2002 Nov;56(11):1081-6.
Abdominal vs buttock adipose fat: relationships with children’s serum lipid levels.
Mamalakis G, Kafatos A, Manios Y, Kalogeropoulos N, Andrikopoulos N.
OBJECTIVE:
To explore the extent to which the reported unfavorable fatty acid content of abdominal depots in adults is also true for children. In addition, the present study aims to assess the relative importance of abdominal vs buttock adipose tissue fat in the prediction of serum lipid levels in children.
DESIGN:
A cross-sectional study of children from the island of Crete.
SETTING:
The study was conducted between October 1999 and January 2000 in the Municipality of St Nikolas, Crete.
SUBJECTS:
A total of 475 children (aged 11-18) participated in the study. Data were obtained on children’s anthropometry, serum lipids, physical activity and abdominal and buttock adipose tissue fatty acids. In total 138 children (aged 11-16) had complete data in all of the variables studied.
RESULTS:
Abdominal depots have elevated proportions of saturated fatty acids (P<0.001) and trans fatty acids (P<0.001), and reduced proportions of monounsaturated (P<0.001) and polyunsaturated fatty acids (P<0.001) in comparison to buttock depots. Buttock adipose tissue monounsaturated fat correlated negatively to serum LDL-C (P<0.05). Abdominal adipose tissue polyunsaturated fat had negative correlations with serum total cholesterol (P<0.05) and LDL-C (P<0.05). Regression analyses indicated that children’s serum total cholesterol (P<0.05) and LDL-C (P<0.05) were inversely related to abdominal adipose tissue polyunsaturated fat. Body mass index was positively related to serum triglycerides (P<0.01) and LDL-C (P<0.01), and negatively to serum HDL-C (P<0.05). Age was negatively related to serum HDL-C (P<0.05). CONCLUSIONS: It appears that, similar to adults, children’s fatty acid composition of abdominal adipose tissue is less favorable than that of the buttock. Abdominal depots have elevated proportions of saturated fatty acids and reduced proportions of monounsaturated and polyunsaturated fat in comparison to buttock depots. Moreover, children’s abdominal depots appear to have higher trans fatty acid contents than buttock depots. Children’s adipose polyunsaturated fat, a biomarker of long-term polyunsaturated fatty acid intake, is inversely related to serum total cholesterol and LDL-C. It appears that abdominal adipose tissue fatty acids are more strongly related to serum lipids than buttock adipose tissue fatty acids. This may be attributed to the reported higher lipolysis rates in abdominal as opposed to buttock depots.
SPONSORSHIP:
Funding was provided by the Municipality of St Nikolas, Crete, Greece.

Br J Nutr. 1979 Jul;42(1):57-61.
Site differences in the fatty acid composition of subcutaneous adipose tissue of obese women.
Pittet PG, Halliday D, Bateman PE.
1. Adipose tissue samples were obtained by needle biopsy from three subcutaneous sites (thigh, abdomen and upper arm) in twenty-two obese women. The fatty acid composition was determined using gas-liquid chromatography and the results presented relate to eleven component fatty acids. 2. The fatty acid composition of adipose tissue obtained from the arm and abdomen was remarkably similar, with the exception of the levels of lauric acid. 3. The analyses showed that the majority of the saturated fatty acids were present in smaller proportions whilst the majority of unsaturated fatty acids were present in larger proportions in the thigh than in the two other sites. Highly significant inter-site differences were demonstrated for six of the major fatty acids and also for both the total amounts of saturated and unsaturated fatty acids and their ratios. 4. No marked differences in the fatty acid composition of adipose tissue from obese subjects were revealed during this study when compared with previously reported results obtained from ‘normal-weight’ subjects.

Am J Clin Nutr. 1994 Nov;60(5):725-9.
Human subcutaneous adipose tissue shows site-specific differences in fatty acid composition.
Phinney SD, Stern JS, Burke KE, Tang AB, Miller G, Holman RT.
Adipose tissue was obtained from six women undergoing liposuction twice at 6-mo intervals. Samples obtained bilaterally from abdomen, inner thigh, and outer thigh had fatty acids quantified by gas chromatography. There were no important differences between sides or over time. The saturates 14:0, 16:0, 18:0, and 20:0 were higher in abdominal adipose than in outer thigh (P < 0.002 for all); 16:1 and 18:1 omega 9 were lower in abdomen vs outer thigh (P < 0.01), whereas 18:1 omega 7 and 20:1 omega 9 were unchanged. Polyunsaturates 18:2 omega 6, 20:3 omega 6, and 20:4 omega 6 were higher in outer thigh than in abdomen (P < 0.06), and inner thigh values were intermediate. These changes in fatty acid composition resulted in lower mean triglyceride melting points from abdomen to inner thigh to outer thigh, and suggest that temperature may influence the selection process determining the variation in adipose fatty acid composition with anatomical location. Because the site-specific differences included essential fatty acids, selective uptake as well as potential differences in in situ fatty acid modification are indicated.

Posted in General.

Tagged with , , , , , , , , .


Protective Effects of Citrus Flavanoid Naringenin

Also see:
Thumbs Up: Fructose

FPS OJ

“Orange juice contains naringenin which is effective against melanoma, and guavas contain apigenin, also effective. A diet consisting of milk, orange juice, guavas, cheese, and some eggs, liver, and oysters, with aspirin would be protective against the spread of the tumor.” -Ray Peat, PhD

Free Radic Res. 2013 Oct;47(10):793-803. doi: 10.3109/10715762.2013.823643. Epub 2013 Aug 8.
Ameliorative effect of naringenin on hyperglycemia-mediated inflammation in hepatic and pancreatic tissues of Wistar rats with streptozotocin- nicotinamide-induced experimental diabetes mellitus.
Annadurai T, Thomas PA, Geraldine P.
In diabetes mellitus (DM), sustained hyperglycemia results in the generation of reactive oxygen species, ultimately leading to increased oxidative stress and inflammation in vital tissues. In the present study, possible ameliorative effects of naringenin on hyperglycemia-mediated inflammation in experimental streptozocin (STZ)-nicotinamide-induced DM were sought. DM was induced experimentally in overnight-fasted Wistar rats (150-180 g) by intra-peritoneal injection of STZ (50 mg/kg.b.w) and of nicotinamide (110 mg/kg.b.w); control rats (n = 6) received only vehicle (0.5 ml of 0.1 M of cold citrate buffer; pH 4.5). One group of diabetic rats (n = 6) was left untreated while another group of diabetic rats (n = 6) received naringenin (50 mg/kg b.w./day) orally for 21 days. At this time, hemotological indices (erythrocyte sedimentation rate [ESR], total white blood cell [WBC] count, differential WBC percentage, and platelet count) were measured. Significant alterations in expression of gene and protein biomarkers of inflammation in hepatic and pancreatic tissues were determined by measuring mRNA levels and the level of protein expressed, respectively, as was the total nitric oxide level in these tissues. Diabetic rats showed significantly higher mean ESR values, total WBC counts, differential WBC percentages, and platelet counts than those in control rats; similarly, mean mRNA levels of C-reactive protein, pro-inflammatory cytokine, nuclear factor-κB and inducible nitric oxide synthase genes and mean intensities of expression of the corresponding proteins in the hepatic and pancreatic tissue samples from diabetic rats significantly exceeded those in control rats. However, in diabetic rats treated with naringenin, the values of hematological, mRNA transcript and protein indices of inflammation were all lower than those in diabetic rats. These results suggest that naringenin possibly alleviates hyperglycemia-mediated inflammation in experimental STZ-nicotinamide-induced DM in Wistar rats.

Amino Acids. 2007 Jan;32(1):95-100. Epub 2006 May 15.
Enhancement of transglutaminase activity and polyamine depletion in B16-F10 melanoma cells by flavonoids naringenin and hesperitin correlate to reduction of the in vivo metastatic potential.
Lentini A, Forni C, Provenzano B, Beninati S.
The in vitro and in vivo effects of two flavonons, naringenin (NG) and hesperitin (HP) on the proliferation rate of highly metastatic murine B16-F10 melanoma cell were investigated. NG or HP treatment of melanoma cells produced a remarkable reduction of cell proliferation, paralleled with both the lowering of the intracellular levels of polyamine, spermidine and spermine and the enhancement of transglutaminase (TGase, EC 2.3.2.13) activity. Orally administered NG or HP in C57BL6/N mice inoculated with B16-F10 cells affected the pulmonary invasion of melanoma cells in an in vivo metastatic assay. The number of lung metastases detected by a computerized image analyzer was reduced, compared to untreated animals, by about 69% in NG-treated mice and by about 36% in HP-treated mice. Survival studies showed that 50% of the NG-treated animals died 38 +/- 3.1 days after tumor cell injection (control group: 18 +/- 1.5 days) and HP-treated mice died 27 +/- 2.3 days after cell inoculation. Taken together, these findings provide further evidences for the potential anticancer properties of dietary flavonoids as chemopreventive agents against malignant melanoma.

Chem Biodivers. 2011 Jun;8(6):1152-62. doi: 10.1002/cbdv.201000311.
In vitro cytotoxic activity of extracts and isolated constituents of Salvia leriifolia Benth. against a panel of human cancer cell lines.
Tundis R, Loizzo MR, Menichini F, Bonesi M, Colica C, Menichini F.
In the course of recent efforts to identify new potential antiproliferative active principles, Salvia leriifolia extracts and isolated constituents were evaluated for their cytotoxic activity against a panel of human cancer cell lines, including renal adenocarcinoma (ACHN), amelanotic melanoma (C32), colorectal adenocarcinoma (Caco-2), lung large cell carcinoma (COR-L23), malignant melanoma (A375), lung carcinoma (A549), and hepatocellular carcinoma (Huh-7D12) cells. The hexane and CH(2) Cl(2) extracts showed the strongest cytotoxic activity against the C32 cell line with IC(50) values of 11.2 and 13.6 μg/ml, respectively, and the AcOEt extract was the most active extract against the COR-L23 cell line (IC(50) of 20.9 μg/ml). Buchariol, a sesquiterpene obtained by biofractionation of the CH(2) Cl(2) extract, exhibited a higher activity than the positive control vinblastine against the C32 and A549 cell lines (IC(50) values of 2.1 and 12.6 μM, resp.). Interesting results were also obtained for naringenin, a flavonoid isolated from the AcOEt extract, which exhibited a strong cytotoxic activity against the C32, LNCaP, and COR-L23 cell lines (IC(50) values of 2.2, 7.7, and 33.4 μM, resp.), compared to vinblastine (IC(50) values of 3.3, 32.2, 50.0 μM, resp.). None of the tested compounds affected the proliferation of skin fibroblasts (142BR), suggesting a selective activity against tumor cells.

Biosci Biotechnol Biochem. 2006 Jun;70(6):1499-501.
Stimulation of melanogenesis by the citrus flavonoid naringenin in mouse B16 melanoma cells.
Ohguchi K, Akao Y, Nozawa Y.
Naringenin is a naturally occurring citrus flavanone. In this study, we examined the effect of naringenin on melanogenesis in mouse B16 melanoma cells. Melanin contents and tyrosinase activities were strongly increased by naringenin. Naringenin was found to cause marked increases in the expression levels of melanogenic enzymes.

J Med Food. 2010 Aug;13(4):976-84. doi: 10.1089/jmf.2009.1251.
Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats.
Kumar A, Dogra S, Prakash A.
Alzheimer’s disease is a neurodegenerative disorder. Central administration of colchicine is well known to cause cognitive impairment and oxidative damage, which simulates sporadic dementia of the Alzheimer type in humans. The present study has been designed to investigate the protective effects of naringin against the colchicine-induced cognitive impairment and oxidative damage in rats. Colchicine (15 microg/5 microL), administered intracerebroventricularly, resulted in poor memory retention in both the Morris water maze and elevated plus maze task paradigms and caused marked oxidative damage. It also caused a significant decrease in acetylcholinesterase activity. Naringin (40 and 80 mg/kg, p.o.) treatment was given daily for a period of 25 days beginning 4 days prior to colchicine administration. Chronic treatment with naringin caused significant improvement in the cognitive performance and attenuated oxidative damage, as evidenced by lowering of malondialdehyde level and nitrite concentration and restoration of superoxide dismutase, catalase, glutathione S-transferase, and reduced glutathione levels, and acetylcholinesterase activity compared to control. The present study highlights the therapeutic potential of naringin against colchicine-induced cognitive impairment and associated oxidative damage.

J Agric Food Chem. 2008 Aug 13;56(15):6185-205. doi: 10.1021/jf8006568. Epub 2008 Jul 2.
Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity.
Significantly, much of the activity of Citrus flavonoids appears to impact blood and microvascular endothelial cells, and it is not surprising that the two main areas of research on the biological actions of Citrus flavonoids have been inflammation and cancer. Epidemiological and animal studies point to a possible protective effect of flavonoids against cardiovascular diseases and some types of cancer. Although flavonoids have been studied for about 50 years, the cellular mechanisms involved in their biological action are still not completely known. Many of the pharmacological properties of Citrus flavonoids can be linked to the abilities of these compounds to inhibit enzymes involved in cell activation. Attempts to control cancer involve a variety of means, including the use of suppressing, blocking, and transforming agents. Suppressing agents prevent the formation of new cancers from procarcinogens, and blocking agents prevent carcinogenic compounds from reaching critical initiation sites, while transformation agents act to facilitate the metabolism of carcinogenic components into less toxic materials or prevent their biological actions. Flavonoids can act as all three types of agent. Many epidemiological studies have shown that regular flavonoid intake is associated with a reduced risk of cardiovascular diseases. In coronary heart disease, the protective effects of flavonoids include mainly antithrombotic, anti-ischemic, anti-oxidant, and vasorelaxant. It is suggested that flavonoids decrease the risk of coronary heart disease by three major actions: improving coronary vasodilatation, decreasing the ability of platelets in the blood to clot, and preventing low-density lipoproteins (LDLs) from oxidizing. The anti-inflammatory properties of the Citrus flavonoids have also been studied. Several key studies have shown that the anti-inflammatory properties of Citrus flavonoids are due to its inhibition of the synthesis and biological activities of different pro-inflammatory mediators, mainly the arachidonic acid derivatives, prostaglandins E 2, F 2, and thromboxane A 2. The anti-oxidant and anti-inflammatory properties of Citrus flavonoids can play a key role in their activity against several degenerative diseases and particularly brain diseases. The most abundant Citrus flavonoids are flavanones, such as hesperidin, naringin, or neohesperidin. However, generally, the flavones, such as diosmin, apigenin, or luteolin, exhibit higher biological activity, even though they occur in much lower concentrations. Diosmin and rutin have a demonstrated activity as a venotonic agent and are present in several pharmaceutical products. Apigenin and their glucosides have been shown a good anti-inflammatory activity without the side effects of other anti-inflammatory products. In this paper, we discuss the relation between each structural factor of Citrus flavonoids and the anticancer, anti-inflammatory, and cardiovascular protection activity of Citrus flavonoids and their role in degenerative diseases.

Toxicology. 2009 Feb 4;256(1-2):128-34. doi: 10.1016/j.tox.2008.11.012. Epub 2008 Nov 21.
Naringenin protects against cadmium-induced oxidative renal dysfunction in rats.
Renugadevi J, Prabu SM.
Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in human and experimental animals. Naringenin is a naturally occurring plant bioflavonoid found in citrus fruits, which has been reported to have a wide range of pharmacological properties. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of cadmium toxicity. Since kidney is the critical target organ of chronic Cd toxicity, we carried out this study to investigate the effects of naringenin on Cd-induced toxicity in the kidney of rats. In experimental rats, oral administration of cadmium chloride (5mg/(kgday)) for 4 weeks significantly induced the renal damage which was evident from the increased levels of serum urea, uric acid, creatinine with a significant (p<0.05) decrease in creatinine clearance. Cadmium also significantly decreased the levels of urea, uric acid and creatinine in urine. A markedly increased levels of lipid peroxidation markers (thiobarbituric acid reactive substances and lipid hydroperoxides) and protein carbonyl contents with significant (p<0.05) decrease in non-enzymatic antioxidants (total sulfhydryl groups, reduced glutathione, vitamin C and vitamin E) and enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST)) as well as glutathione metabolizing enzymes (glutathione reductase (GR) and glutathione-6-phosphate dehydrogenase (G6PD)) were also observed in cadmium-treated rats. Co-administration of naringenin (25 and 50mg/(kgday)) along with Cd resulted in a reversal of Cd-induced biochemical changes in kidney accompanied by a significant decrease in lipid peroxidation and an increase in the level of renal antioxidant defense system. The histopathological studies in the kidney of rats also showed that naringenin (50mg/(kgday)) markedly reduced the toxicity of Cd and preserved the normal histological architecture of the renal tissue. The present study suggest that the nephroprotective potential of naringenin in Cd toxicity might be due to its antioxidant and metal chelating properties, which could be useful for achieving optimum effects in Cd-induced renal damage.

Basic Clin Pharmacol Toxicol. 2006 May;98(5):456-61.
Influence of naringenin on oxytetracycline mediated oxidative damage in rat liver.
Pari L, Gnanasoundari M.
Naringenin is a naturally occurring citrus flavanone, which has been reported to have a wide range of pharmacological properties. The present work was carried out to evaluate the effect of naringenin on antioxidant and lipid peroxidation status in liver of oxytetracycline-intoxicated rats. Intraperitonial administration of oxytetracycline 200 mg/kg for 15 days resulted a significant elevation in serum hepatospecific markers such as aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, and bilirubin and the levels of lipid peroxidation markers (thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides) in liver. Oxytetracycline also caused a significant reduction in the activities of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione (GSH), vitamin C and vitamin E in liver. Oral administration of naringenin (50 mg/kg b.w.t.) with oxytetracycline significantly decreased the activities of serum aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase and the levels of bilirubin along with significant decrease in the levels of lipid peroxidation markers in the liver. In addition, naringenin significantly increased the activities of superoxide dismutase, catalase and GSH peroxidase as well as the level of GSH, vitamin C and vitamin E in liver of the oxytetracycline-treated rats. Our results demonstrate that naringenin exhibited antioxidant property and decrease the lipid peroxidation against oxytetracycline-induced oxidative stress in liver.

Exp Toxicol Pathol. 2010 Mar;62(2):171-81. doi: 10.1016/j.etp.2009.03.010. Epub 2009 May 5.
Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin.
Renugadevi J, Prabu SM.
This experiment pertains to the protective role of naringenin against cadmium (Cd)-induced oxidative stress in the liver of rats. Cadmium is a major environmental pollutant and is known for its wide toxic manifestations. Naringenin is a naturally occurring citrus flavonone which has been reported to have a wide range of pharmacological properties. In the present investigation cadmium (5mg/kg) was administered orally for 4 weeks to induce hepatotoxicity. Liver damage induced by cadmium was clearly shown by the increased activities of serum hepatic marker enzymes namely aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma glutamyl transferase (GGT) and serum total bilirubin (TB) along with the increased level of lipid peroxidation indices (thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides) and protein carbonyl contents in liver. The toxic effect of cadmium was also indicated by significantly decreased levels of enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST)) and non-enzymatic antioxidants (reduced glutathione (GSH), vitamin C and vitamin E). Administration of naringenin at a dose of (50mg/kg) significantly reversed the activities of serum hepatic marker enzymes to their near-normal levels when compared to Cd-treated rats. In addition, naringenin significantly reduced lipid peroxidation and restored the levels of antioxidant defense in the liver. The histopathological studies in the liver of rats also showed that naringenin (50mg/kg) markedly reduced the toxicity of cadmium and preserved the normal histological architecture of the tissue. The present study suggested that naringenin may be beneficial in ameliorating the cadmium-induced oxidative damage in the liver of rats.

J Physiol Biochem. 2012 Sep;68(3):307-18. doi: 10.1007/s13105-011-0142-y. Epub 2012 Jan 11.
Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-nicotinamide-induced experimental diabetic rats.
Annadurai T, Muralidharan AR, Joseph T, Hsu MJ, Thomas PA, Geraldine P.
In the present study, the putative antihyperglycemic and antioxidant effects of a flavanone, naringenin, were evaluated in comparison with those of glyclazide, a standard drug for therapy of diabetes mellitus. Diabetes was induced experimentally in 12-h-fasted rats by intraperitoneal injections of first streptozotocin (50 mg/kg b.w.) and then of nicotinamide (110 mg/kg b.w.) after a 15-min interval. Untreated diabetic rats revealed the following in comparison with normal rats: significantly higher mean levels of blood glucose and glycosylated hemoglobin, significantly lower mean levels of serum insulin, significantly lower mean activities of pancreatic antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase), significantly lower mean levels of plasma non-enzymatic antioxidants (reduced glutathione, vitamin C , vitamin E), significantly elevated mean levels of pancreatic malondialdehyde (MDA) and significantly elevated mean activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Following oral administration of naringenin (50 mg/kg b.w./day) to diabetic rats for 21 days, the following observations were made in comparison with untreated diabetic rats: significantly lower mean levels of fasting blood glucose and glycosylated hemoglobin, significantly elevated serum insulin levels, significantly higher mean activities of pancreatic enzymatic antioxidants, significantly higher mean levels of plasma non-enzymatic antioxidants, lower mean pancreatic tissue levels of MDA and lower mean activities of ALT, AST, ALP and LDH in serum. The values obtained in the naringenin-treated animals approximated those observed in glyclazide-treated animals. Histopathological studies appeared to suggest a protective effect of naringenin on the pancreatic tissue in diabetic rats. These results suggest that naringenin exhibits antihyperglycemic and antioxidant effects in experimental diabetic rats.

Curr Opin Lipidol. 2013 Feb;24(1):34-40. doi: 10.1097/MOL.0b013e32835c07fd.
Citrus flavonoids and lipid metabolism.
Assini JM, Mulvihill EE, Huff MW.
PURPOSE OF REVIEW:
Citrus flavonoids are polyphenolic compounds with powerful biological properties. This review aims to summarize recent advances towards understanding the ability of citrus flavonoids to regulate lipid metabolism and other metabolic parameters relevant to the metabolic syndrome, type 2 diabetes and cardiovascular disease.
RECENT FINDINGS:
Citrus flavonoids, including naringenin, hesperidin, nobiletin and tangeretin, have emerged as promising therapeutic agents for the treatment of metabolic dysregulation. Epidemiological studies report that intake of citrus flavonoid-containing foods attenuates cardiovascular diseases. Experimental and a limited number of clinical studies reveal lipid-lowering, insulin-sensitizing, antihypertensive and anti-inflammatory properties. In animal models, citrus flavonoid supplements prevent hepatic steatosis, dyslipidemia and insulin sensitivity primarily through inhibition of hepatic fatty acid synthesis and increased fatty acid oxidation. Citrus flavonoids blunt the inflammatory response in metabolically important tissues including liver, adipose tissue, kidney and the aorta. The mechanisms underlying flavonoid-induced metabolic regulation have not been completely established. In mouse models, citrus flavonoids show marked suppression of atherogenesis through improved metabolic parameters and also through direct impact on the vessel wall.
SUMMARY:
These recent studies suggest an important role of citrus flavonoids in the treatment of dyslipidemia, insulin resistance, hepatic steatosis, obesity and atherosclerosis. The favorable outcomes are achieved through multiple mechanisms. Human studies focussed on dose, bioavailability, efficacy and safety are required to propel the use of these promising therapeutic agents into the clinical arena.

Int J Tissue React. 1983;5(4):415-20.
The gastric anti-ulcer activity of naringenin, a specific histidine decarboxylase inhibitor.
Parmar NS.
The gastric anti-ulcer activity of a specific histidine decarboxylase inhibitor naringenin, the aglycone of naringin, a naturally occurring flavanone glycoside obtained from kino and grapefruits, has been studied on the various types of ulcers experimentally induced in rats, viz., pylorus-ligated (Shay method) and restraint ulcers, and on the gastric mucosal damage induced by aspirin, phenylbutazone or reserpine. Naringenin possessed significant anti-ulcer activity in all these models, manifesting a dose-dependent anti-ulcer effect on the pylorus-ligated and restraint ulcers. However, the ED50 value against ulcers in the pylorus-ligated rats (132 mg/kg) was significantly greater than that against ulcers in the restraint rats (42 mg/kg). Amongst all the models used, naringenin was found most effective against the restraint rats. It is suggested that a mechanism involving the inhibition of formation and release of endogenous histamine in the gastric mucosa of rats is implicated in the protective effect of naringenin.

Phytomedicine. 2011 Nov 15;18(14):1244-9. doi: 10.1016/j.phymed.2011.06.028. Epub 2011 Jul 28.
Citrus flavanone naringenin enhances melanogenesis through the activation of Wnt/β-catenin signalling in mouse melanoma cells.
Huang YC, Yang CH, Chiou YL.
Citrus fruits are the major source of flavonoids for humans, and flavanones are the main flavonoids in the Citrus species. Among the Citrus flavanones, the glycoside derivatives of naringenin, naringin and narirutin, are the most abundant in grapefruit. The present study aimed to investigate the molecular events of melanogenesis induced by naringenin in murine B16-F10 melanoma cells. Melanin content, tyrosinase activity and Western blot analysis were performed to elucidate the possible underlying mechanisms. Exposure of melanoma cells to naringenin resulted in morphological changes accompanied by the induction of melanocyte differentiation-related markers, such as melanin synthesis, tyrosinase activity, and the expression of tyrosinase and microphthalmia-associated transcription factor (MITF). We also observed an increase in the intracellular accumulation of β-catenin as well as the phosphorylation of glycogen synthase kinase-3β (GSK3β) protein after treatment with naringenin. Moreover, the activity of phosphatidylinositol 3-kinase (PI3K) was up-regulated by naringenin since the phosphorylated level of downstream Akt protein was enhanced. Based on these results, we concluded that naringenin induced melanogenesis through the Wnt-β-catenin-signalling pathway.

Phytother Res. 2011 Apr;25(4):569-76. doi: 10.1002/ptr.3302. Epub 2010 Sep 20.
Hydrolysates of citrus plants stimulate melanogenesis protecting against UV-induced dermal damage.
Chiang HM, Lin JW, Hsiao PL, Tsai SY, Wen KC.
The sun-tanning process occurs as a spontaneous response to ultraviolet (UV) irradiation. UV will induce tanning and DNA damage, processes that can lead to photoaging and skin disorders such as hyperpigmentation and cancer. The pigment melanin protects skin from UV damage; therefore, an efficient melanin-promoting suntan lotion could be highly beneficial. In this study, a process was developed to increase the content of naringenin in citrus extracts and to determine whether a higher naringenin content of citrus would induce melanogenesis. Melanin content and tyrosinase expression in mouse B16 melanoma cells were assayed after treatment with citrus plant extracts and their hydrolysates. The results indicate that hydrolysis increased the naringenin content in citrus extracts and that citrus preparations stimulated cellular melanogenesis and tyrosinase expression. It is suggested that this method is applicable to the industrial production of melanin-promoting suntan lotions with antiphotocarcinogenic properties derived from citrus rind and citrus products.

J Periodontal Res. 2008 Aug;43(4):400-7. doi: 10.1111/j.1600-0765.2007.01055.x.
Naringenin has anti-inflammatory properties in macrophage and ex vivo human whole-blood models.
Bodet C1, La VD, Epifano F, Grenier D.
BACKGROUND AND OBJECTIVE:
Periodontitis is a chronic inflammatory disease of bacterial etiology, affecting tooth-supporting tissues. The host inflammatory response to periodontopathogens, notably the high and continuous production of cytokines, is considered a major factor causing the local tissue destruction observed in periodontitis. The aim of the present study was to investigate the effect of naringenin, a major flavanone in grapefruits and tomatoes, on the lipopolysaccharide-induced pro-inflammatory cytokine production by host cells, using two different models.
MATERIAL AND METHODS:
The effect of naringenin was characterized using macrophages stimulated with the lipopolysaccharide of either Aggregatibacter actinomycetemcomitans or Escherichia coli and using whole blood stimulated with A. actinomycetemcomitans lipopolysaccharide, in the presence or absence of naringenin. Lipopolysaccharide-induced interleukin-1 beta, interleukin-6, interleukin-8 and tumor necrosis factor-alpha production by macrophages and whole-blood samples treated with naringenin were evaluated using an enzyme-linked immunosorbent assay. Changes in the phosphorylation states of macrophage kinases induced by A. actinomycetemcomitans lipopolysaccharide and naringenin were characterized by immunoblot screening.
RESULTS:
Our results clearly indicated that naringenin is a potent inhibitor of the pro-inflammatory cytokine response induced by lipopolysaccharide in both macrophages and in whole blood. Naringenin markedly inhibited the phosphorylation on serines 63 and 73 of Jun proto-oncogene-encoded AP-1 transcription factor in lipopolysaccharide-stimulated macrophages.
CONCLUSION:
The results from the present study suggest that naringenin holds promise as a therapeutic agent for treating inflammatory diseases such as periodontitis.

Br J Nutr. 2013 Aug;110(4):599-608. doi: 10.1017/S0007114512005594. Epub 2013 Mar 18.
Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-κB signalling.
Dou W1, Zhang J, Sun A, Zhang E, Ding L, Mukherjee S, Wei X, Chou G, Wang ZT, Mani S.
Naringenin, one of the most abundant flavonoids in citrus, grapefruits and tomatoes, has been used as a traditional anti-inflammatory agent for centuries. However, the molecular mechanism of naringenin in intestinal inflammation remains unknown so far. The present study investigated a molecular basis for the protective effect of naringenin in dextran sulphate sodium-induced murine colitis. Pre-administration of naringenin significantly reduced the severity of colitis and resulted in down-regulation of pro-inflammatory mediators (inducible NO synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), cyclo-oxygenase-2 (Cox2), TNF-α and IL-6 mRNA) in the colon mucosa. The decline in the production of pro-inflammatory cytokines, specifically TNF-α and IL-6, correlated with a decrease in mucosal Toll-like receptor 4 (TLR4) mRNA and protein. Phospho-NF-κB p65 protein was significantly decreased, which correlated with a similar decrease in phospho-IκBα protein. Consistent with the in vivo results, naringenin exposure blocked lipopolysaccharide-stimulated nuclear translocation of NF-κB p65 in mouse macrophage RAW264.7 cells. In addition, in vitro NF-κB reporter assays performed on human colonic HT-29 cells exposed to naringenin demonstrated a significant inhibition of TNF-α-induced NF-κB luciferase expression. Thus, for the first time, the present study indicates that targeted inhibition of the TLR4/NF-κB signalling pathway might be an important mechanism for naringenin in abrogating experimental colitis.

Posted in General.

Tagged with , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , .