Categories:

Omega -3 “Deficiency” Decreases Serotonin Producing Enzyme

Also see:
Tryptophan Metabolism: Effects of Progesterone, Estrogen, and PUFA
Anti Serotonin, Pro Libido
Gelatin > Whey
Thyroid peroxidase activity is inhibited by amino acids
Whey, Tryptophan, & Serotonin
Tryptophan, Fatigue, Training, and Performance
Carbohydrate Lowers Free Tryptophan
Protective Glycine
Intestinal Serotonin and Bone Loss
Hypothyroidism and Serotonin
Estrogen Increases Serotonin
Gelatin, Glycine, and Metabolism
Whey, Tryptophan, & Serotonin
Tryptophan, Sleep, and Depression

“An excess of tryptophan in the diet, especially with deficiencies of other nutrients, can combine with inflammation to increase serotonin. Polyunsaturated fatty acids promote the absorption of tryptophan by the brain, and its conversion to serotonin. A “deficiency” of polyunsaturated fat decreases the expression of the enzyme that synthesizes serotonin (McNamara, et al., 2009). -Ray Peat, PhD

J Psychiatr Res. 2009 Mar;43(6):656-63. Epub 2008 Nov 4.
Omega-3 fatty acid deficiency during perinatal development increases serotonin turnover in the prefrontal cortex and decreases midbrain tryptophan hydroxylase-2 expression in adult female rats: dissociation from estrogenic effects.
McNamara RK, Able J, Liu Y, Jandacek R, Rider T, Tso P, Lipton JW.
A dysregulation in central serotonin neurotransmission and omega-3 fatty acid deficiency have been implicated in the pathophysiology of major depression. To determine the effects of omega-3 fatty acid deficiency on indices of serotonin neurotransmission in the adult rat brain, female rats were fed diets with or without the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during perinatal (E0-P90), post-weaning (P21-P90), and post-pubescent (P60-130) development. Ovariectomized (OVX) rats and OVX rats with cyclic estrogen treatment were also examined. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content, and fatty acid composition were determined in the prefrontal cortex (PFC), and tryptophan hydroxylase-2 (TPH-2), serotonin transporter, and 5-HT(1A) autoreceptor mRNA expression were determined in the midbrain. ALA deficiency during perinatal (-62%, p=0.0001), post-weaning (-34%, p=0.0001), and post-pubertal (-10%, p=0.0001) development resulted in a graded reduction in adult PFC docosahexaenoic acid (DHA, 22:6n-3) composition. Relative to controls, perinatal DHA-deficient rats exhibited significantly lower PFC 5-HT content (-65%, p=0.001), significant greater 5-HIAA content (+15%, p=0.046), and a significant greater 5-HIAA/5-HT ratio (+73%, p=0.001). Conversely, post-weaning DHA-deficient rats exhibited significantly greater PFC 5-HT content (+12%, p=0.03), no change in 5-HIAA content, and a significantly smaller 5-HIAA/5-HT ratio (-9%, p=0.01). Post-pubertal DHA-deficient and OXV rats did not exhibit significant alterations in PFC 5-HT or 5-HIAA content. Only perinatal DHA-deficient rats exhibited a significant reduction in midbrain TPH-2 mRNA expression (-29%, p=0.03). These preclinical data support a causal link between perinatal omega-3 fatty acid deficiency and reduced central serotonin synthesis in adult female rats that is independent of ovarian hormones including estrogen.

Posted in General.

Tagged with , , , , , , , , , .