Also see:
Are biochemical tests of thyroid function of any value in monitoring patients receiving thyroxine replacement?
W.D. Denckla, A.V. Everitt, Hypophysectomy, & Aging
Temperature and Pulse Basics & Monthly Log
The Cholesterol and Thyroid Connection
Inflammation from Decrease in Body Temperature
High Cholesterol and Metabolism
The Truth about Low Cholesterol
Thyroid Status and Oxidized LDL
Inflammatory TSH
“Normal” TSH: Marker for Increased Risk of Fatal Coronary Heart Disease
Thyroid Status and Cardiovascular Disease
High Blood Pressure and Hypothyroidism
A Cure for Heart Disease
Hypothyroidism and A Shift in Death Patterns
Is 98.6 Really Normal?
T3 Therapy to Reset Low Body Temperature in Hypothyroidism
“Measuring the amount of thyroid in the blood isn’t a good way to evaluate adequacy of thyroid function, since the response of tissues to the hormone can be suppressed (for example, by unsaturated fats).
In the 1930’s accurate diagnosis was made by evaluating a variety of indications, including basal oxygen consumption, serum cholesterol level, pulse rate, temperature, carotenemia, bowel function, and quality of hair and skin. A good estimate can be made using only the temperature and pulse rate.
Oral or armpit temperature, in the morning before getting out of bed, should be around 98F, and it should rise to 98.6F by mid-morning. This is not valid if you sleep under and electric blanket, or is the weather is hot and humid. A person who is hypothyroid produces heat at a low rate, but doesn’t lose it at a normal rate, since there is less sweating, and the skin is relatively cool. Many hypothyroid people compensate with high adrenalin production (sometimes 40 times higher than normal), and this tends to keep the skin cook, especially on the hands, feet, and nose. The high adrenalin is the consequence of low blood glucose, so a feeding of carbohydrate, such as a glass of orange juice, will sometimes lower the pulse rate momentarily. Healthy populations have an average resting pulse of about 85 per minute. Especially in hot weather it is useful to consider both temperature and pulse rate.”
“The thyroid gland secretes about 3 parts thyroxin to one part triiodothyronine, and this allows the liver to regulate thyroid function, by converting more of the T4 to the active T3 when there is an abundance of energy. Glucose is essential for the conversion, so during fasting there is a sharp decrease in metabolic rate, and in experiments, 200 to 300 calories of carbohydrate can be added to the diet diet without causing fat storage.
When the liver is the main cause of hypothyroidism, your temperature (and especially the temperature of your nose, hands and feet) will fall when hungry, and will rise when you eat carbohydrates. If a hypothyroid person has a very slow pulse, and feels lethargic, it seems that there is little adrenalin; in this case, a feeding of carbohydrate is likely to increase both the pulse rate and the temperature, as the liver is permitted to form the active T3 hormone.
Women often have above-average thyroxin, with symptoms of hypothyroidism. This is apparently because it isn’t being converted to the active form (T3). Before using a Cytomel (T3) supplement, it might be possible to solve the problem with diet alone. A piece of fruit or glass of juice or milk between meals, and adequate animal protein (or potato protein) in the diet is sometimes enough to allow the liver to produce the hormone. If Cytomel is used, it is efficient to approximate the physiological rate of T3 formation, by nibbling one (10 to 25 mcg) tablet during the day. When a large amount is taken at one time, the liver is likely to convert much of it to the inactive reverse T3 form, in a normal defensive response.
Women normally have less active livers than men do. Estrogen can have a directly toxic effect on the liver, but the normal reason for the difference is probably that temperature and thyroid function strongly influence the liver, and are generally lower in women than in men. Estrogen inhibits the secretion of hormone by the thyroid gland itself, probably by inhibiting the proteolytic enzymes which dissolves the colloid. Progesterone has the opposite effect, promoting the release of the hormones from the gland. At puberty, in pregnancy, and at menopause, the thyroid gland often enlarges, probably as a result of estrogen dominance.
Thyroid function stimulates the liver to inactivate estrogen for secretion, so estrogen dominance can create a viscous circle, in which estrogen (or deficient progesterone) blocks thyroid secretion, causing the liver to allow estrogen to accumulate to even higher levels. Progesterone (even one dose, in some cases) can break the cycle. However, if the gland is very big, one person can experience a few months of hyperthyroidism, as the gland returns to normal. It is better to allow the enlarged gland to shrink more slowly by using a thyroid supplement. If an enlarged gland does begin to secrete too much thyroid hormone, it can be controlled with tablets of propylthiouracil, or even raw cabbage or cabbage juice, and cysteine rich meats, including liver.
Besides fasting, or chronic protein deficiency, the common causes of hypothyroidism are excessive stress or “aerobic” (i.e., anaerobic) exercise, and diets containing beans, lentils, nuts, unsaturated fats (including carotene), and undercooked broccoli, cauliflower, cabbage, and mustard greens. Many health conscious people become hypothyroid with a synergistic program of undercooked vegetables, legumes instead of animal proteins, oils instead of butter, carotene instead of vitamin A, and breathless exercise instead of stimulating life.”
“Each of the indicators of thyroid function can be useful, but has to be interpreted in relation to the physiological state.
Increasingly, TSH (the pituitary thyroid stimulating hormone) has been treated as if it meant something independently; however, it can be brought down into the normal range, or lower, by substances other than the thyroid hormones.
“Basal” body temperature is influenced by many things besides thyroid. The resting heart rate helps to interpret the temperature. In a cool environment, the temperature of the extremities is sometimes a better indicator than the oral or eardrum temperature.”
“Unless someone can demonstrate the scientific invalidity of the methods used to diagnose hypothyroidism up to 1945, then they constitute the best present evidence for evaluating hypothyroidism, because all of the blood tests that have been used since 1950 have been shown to be, at best, very crude and conceptually inappropriate methods.
Thomas H. McGavack’s 1951 book, The Thyroid, was representative of the earlier approach to the study of thyroid physiology. Familiarity with the different effects of abnormal thyroid function under different conditions, at different ages, and the effects of gender, were standard parts of medical education that had disappeared by the end of the century. Arthritis, irregularities of growth, wasting, obesity, a variety of abnormalities of the hair and skin, carotenemia, amenorrhea, tendency to miscarry, infertility in males and females, insomnia or somnolence, emphysema, various heart diseases, psychosis, dementia, poor memory, anxiety, cold extremities, anemia, and many other problems were known reasons to suspect hypothyroidism. If the physician didn’t have a device for measuring oxygen consumption, estimated calorie intake could provide supporting evidence. The Achilles’ tendon reflex was another simple objective measurement with a very strong correlation to the basal metabolic rate. Skin electrical resistance, or whole body impedance wasn’t widely accepted, though it had considerable scientific validity.
A therapeutic trial was the final test of the validity of the diagnosis: If the patient’s symptoms disappeared as his temperature and pulse rate and food intake were normalized, the diagnostic hypothesis was confirmed. It was common to begin therapy with one or two grains of thyroid, and to adjust the dose according to the patient’s response. Whatever objective indicator was used, whether it was basal metabolic rate, or serum cholesterol, or core temperature, or reflex relaxation rate, a simple chart would graphically indicate the rate of recovery toward normal health.”
“Since I have been interested in the way that hypothyroidism, a T3 deficiency, causes sleep problems, I have seen similar patterns in several seemingly different conditions. At menopause, insomnia, hypothyroidism, and diabetes are like to develop along with hot flashes. Although hypothyroidism often causes the temperature to be subnormal, I saw many women whose temperature before breakfast was normal, but then fell after breakfast, usually following some hot flashes and sweats. Gradually, I began to realize that this corresponded to extremely high adrenaline and cortisol in the morning, and that high morning temperature was sometimes the first sign of the developing “hyper-alert” state, though most often it just represented the stress and exhaustion that result from disturbed, inefficient sleep.
Using a small does of T3 normally causes an increase of temperature and pulse rate, but in these people who are in an extremely adrenergic state, the T3 causes both the temperature and heart rate to decrease, as it restores metabolic efficiency. Then, as the stress state disappears, the thyroid supplements will gradually begin to bring the metabolic rate, temperature, and pulse up to normal. When the body temperature is maintained by thyroid-supported respiration, rather than by stress hormones, the sleep is efficient.
Thyroid, especially T3, has been commonly used in the treatment of depression, and there are many indications that, as it relieves the depression, it is also correcting a state of stress, lowering the cortisol which is typically chronically increased in depression, making sleep restful, rather than debilitating.”
“Blood tests for cholesterol, albumin, glucose, sodium, lactate, total thyroxine and total T3 are useful to know, because they help to evaluate the present thyroid status, and sometimes they can suggest ways to correct the problem.
Less common blood or urine tests (adrenaline, cortisol, ammonium, free fatty acids), if they are available, can help to understand compensatory reactions to hypothyroidism.
A book such as McGavack’s The Thyroid, that provides traditional medical knowledge about thyroid physiology, can help to dispel some of the current dogmas about the thyroid.
Using more physiologically relevant methods to diagnose hypothyroidism will contribute to understanding its role in many problems now considered to be unrelated to the thyroid.”
“Years ago it was reported that Armour thyroid, U.S.P., released T3 and T4, when digested, in a ratio of 1:3, and that people who used it had much higher ratios of T3 to T4 in their serum, than people who took only thyroxine. The argument was made that thyroxine was superior to thyroid U.S.P., without explaining the significance of the fact that healthy people who weren’t taking any thyroid supplement had higher T3:T4 ratios than the people who took thyroxine, or that our own thyroid gland releases a high ratio of T3 to T4. The fact that the T3 is being used faster than T4, removing it from the blood more quickly than it enters from the thyroid gland itself, hasn’t been discussed in the journals, possibly because it would support the view that a natural glandular balance was more appropriate to supplement than pure thyroxine.
The serum’s high ratio of T4 to T3 is a pitifully poor argument to justify the use of thyroxine instead of a product that resembles the proportion of these substances secreted by a healthy thyroid gland, or maintained inside cells. About 30 years ago, when many people still thought of thyroxine as “the thryoid hormone,” someone was making the argument that “the thyroid hormone” must work exclusively as an activator of genes, since most of the organ slices he tested didn’t increase their oxygen consumption when it was added. In fact, the addition of thyroxine to brain slices suppressed their respiration by 6% during the experiment. Since most T3 is produced from T4 in the liver, not in the brain, I think that experiment had great significance, despite the ignorant interpretation of the author. An excess of thyroxine, in a tissue that doesn’t convert it rapidly to T3, has an antithyroid action. (See Goumaz, et al, 1987.) This happens in many women who are given thyroxine; as their dose is increased, their symptoms get worse.
The brain concentrates T3 from the serum, and may have a concentration 6 times higher than the serum (Goumaz, et al., 1987), and it can achieve a higher concentration of T3 than T4. It takes up and concentrates T3, while tending to expel T4. Reverse T3 (rT3) doesn’t have much ability to enter the brain, but increased T4 can cause it to be produced in the brain. These observations suggest to me that the blood’s T3:T4 ratio would be very “brain favorable” if it approached more closely to the ratio formed in the thyroid gland, and secreted into the blood. Although most synthetic combination thyroid products now use a ratio of four T4 to one T3, many people feel that their memory and thinking are clearer when they take a ratio of about three to one. More active metabolism probably keeps the blood ratio of T3 to T4 relatively high, with the liver consuming T4 at about the same rate that T3 is used.
Since T3 has a short half life, it should be taken frequently. If the liver isn’t producing a noticeable amount of T3, it is usually helpful to take a few micorgrams per hour. Since it restores respiration and metabolic efficiency very quickly, it isn’t usually necessary to take it every hour or two, but until normal temperature and pulse have been achieved and stabilized, sometimes it’s necessary to take it four or more times during the day. T4 acts by being changed to T3, so it tends to accumulate in the body, and on a given dose, usually reaches a steady concentration after about two weeks.
An effective way to use supplements is to take a combination T4-T3 dose, e.g., 40 mcg of T4 and 10 mcg of T3 once a day, and to use a few mcg of T3 at other times in the day. Keeping a 14-day chart of pulse rate and temperature allows you to see whether the dose is producing the desired response. If the figures aren’t increasing at all after a few days, the dose can be increased, until a gradual daily increment can be seen, moving toward the goal at the rate of about 1/14 per day.”
“In recent years the “normal range” for TSH has been decreasing. In 2003, the American Association of Clinical Endocrinologists changed their guidelines for the normal range to 0.3 to 3.0 microIU/ml. But even though this lower range is less arbitrary than the older standards, it still isn’t based on an understanding of the physiological meaning of TSH.
Over a period of several years, I never saw a person whose TSH was over 2 microIU/ml who was comfortably healthy, and I formed the impression that the normal, or healthy, quantity was probably something less than 1.0.
If a pathologically high TSH is defined as normal, its role in major diseases, such as breast cancer, mastalgia, MS, fibrotic diseases, and epilepsy, will simply be ignored. Even if the possibility is considered, the use of an irrational norm, instead of a proper comparison, such as the statistical difference between the mean TSH levels of cases and controls, leads to denial of an association between hypothyroidism and important diseases, despite evidence that indicates an association.
Some critics have said that most physicians are “treating the TSH,” rather than the patient. If TSH is itself pathogenic, because of its pro-inflammatory actions, then that approach isn’t entirely useless, even when they “treat the TSH” with only thyroxine, which often isn’t well converted into the active triiodothyronine, T3. But the relief of a few symptoms in a small percentage of the population is serving to blind the medical world to the real possibilities of thyroid therapy.
TSH has direct actions on many cell types other than the thyroid, and probably contributes directly to edema (Wheatley and Edwards, 1983), fibrosis, and mastocytosis. If people are concerned about the effects of a TSH “deficiency,” then I think they have to explain the remarkable longevity of the animals lacking pituitaries in W.D. Denckla’s experiments, or of the naturally pituitary deficient dwarf mice that lack TSH, prolactin, and growth hormone, but live about a year longer than normal mice (Heiman, et al., 2003). Until there is evidence that very low TSH is somehow harmful, there is no basis for setting a lower limit to the normal range.
Some types of thyroid cancer can usually be controlled by keeping TSH completely suppressed. Since TSH produces reactions in cells as different as fibroblasts and fat cells, pigment cells in the skin, mast cells and bone marrow cells (Whetsell, et al., 1999), it won’t be surprising if it turns out to have a role in the development of a variety of cancers, including melanoma.
Many things, including the liver and the senses, regulate the function of the thyroid system, and the pituitary is just one of the factors affecting the synthesis and secretion of the thyroid hormones.
A few people who had extremely low levels of pituitary hormones, and were told that they must take several hormone supplements for the rest of their life, began producing normal amounts of those hormones within a few days of eating more protein and fruit. Their endocrinologist described them as, effectively, having no pituitary gland. Extreme malnutrition in Africa has been described as creating “. . . a condition resembling hypophysectomy,” (Ingenbleek and Beckers, 1975) but the people I talked to in Oregon were just following what they thought were healthful nutritional policies, avoiding eggs and sugars, and eating soy products.
Occasionally, a small supplement of thyroid in addition to a good diet is needed to quickly escape from the stress-induced “hypophysectomized” condition.
Aging, infection, trauma, prolonged cortisol excess, somatostatin, dopamine or L-dopa, adrenaline (sometimes; Mannisto, et al., 1979), amphetamine, caffeine and fever can lower TSH, apart from the effect of feedback by the thyroid hormones, creating a situation in which TSH can appear normal or low, at the same time that there is a real hypothyroidism.
A disease or its treatment can obscure the presence of hypothyroidism. Parkinson’s disease is a clear example of this. (Garcia-Moreno and Chacon, 2002: “… in the same way hypothyroidism can simulate Parkinson’s disease, the latter can also conceal hypothyroidism.”)
The stress-induced suppression of TSH and other pituitary hormones is reminiscent of the protective inhibition that occurs in individual nerve fibers during dangerously intense stress, and might involve such a “parabiotic” process in the nerves of the hypothalamus or other brain region. The relative disappearance of the pituitary hormones when the organism is in very good condition (for example, the suppression of ACTH and cortisol by sugar or pregnenolone) is parallel to the high energy quiescence of individual nerve fibers.
These associations between energy state and cellular activity can be used for evaluating the thyroid state, as in measuring nerve and muscle reaction times and relaxation rates. For example, relaxation which is retarded, because of slow restoration of the energy needed for cellular “repolarization,” is the basis for the traditional use of the Achilles tendon reflex relaxation test for diagnosing hypothyroidism. The speed of relaxation of the heart muscle also indicates thyroid status (Mohr-Kahaly, et al., 1996).
Stress, besides suppressing the TSH, acts in other ways to suppress the real thyroid function. Cortisol, for example, inhibits the conversion of T4 to T3, which is responsible for the respiratory production of energy and carbon dioxide. Adrenaline, besides leading to increased production of cortisol, is lipolytic, releasing the fatty acids which, if they are polyunsaturated, inhibit the production and transport of thyroid hormone, and also interfere directly with the respiratory functions of the mitochondria. Adrenaline decreases the conversion to T4 to T3, and increases the formation of the antagonistic reverse T3 (Nauman, et al., 1980, 1984).
During the night, at the time adrenaline and free fatty acids are at their highest, TSH usually reaches its peak. TSH itself can produce lipolysis, raising the level of circulating free fatty acids. This suggests that a high level of TSH could sometimes contribute to functional hypothyroidism, because of the antimetabolic effects of the unsaturated fatty acids.
These are the basic reasons for thinking that the TSH tests should be given only moderate weight in interpreting thyroid function.
The metabolic rate is very closely related to thyroid hormone function, but defining it and measuring it have to be done with awareness of its complexity.
The basal metabolic rate that was commonly used in the 1930s for diagnosing thyroid disorders was usually a measurement of the rate of oxygen consumption, made while lying quietly early in the morning without having eaten anything for several hours. When carbon dioxide production can be measured at the same time as oxygen consumption, it’s possible to estimate the proportion of energy that is being derived from glucose, rather than fat or protein, since oxidation of glucose produces more carbon dioxide than oxidation of fat does. Glucose oxidation is efficient, and suggests a state of low stress.
The very high adrenaline that sometimes occurs in hypothyroidism will increase the metabolic rate in several ways, but it tends to increase the oxidation of fat. If the production of carbon dioxide is measured, the adrenaline/stress component of metabolism will be minimized in the measurement. When polyunsaturated fats are mobilized, their spontaneous peroxidation consumes some oxygen, without producing any usable energy or carbon dioxide, so this is another reason that the production of carbon dioxide is a very good indicator of thyroid hormone activity. The measurement of oxygen consumption was usually done for two minutes, and carbon dioxide production could be accurately measured in a similarly short time. Even a measurement of the percentage of carbon dioxide at the end of a single breath can give an indication of the stress-free, thyroid hormone stimulated rate of metabolism (it should approach five or six percent of the expired air).
Increasingly in the last several years, people who have many of the standard symptoms of hypothyroidism have told me that they are hyperthyroid, and that they have to decide whether to have surgery or radiation to destroy their thyroid gland. They have told me that their symptoms of “hyperthyroidism,” according to their physicians, were fatigue, weakness, irritability, poor memory, and insomnia.
They didn’t eat very much. They didn’t sweat noticeably, and they drank a moderate amount of fluids. Their pulse rates and body temperature were normal, or a little low.
Simply on the basis of some laboratory tests, they were going to have their thyroid gland destroyed. But on the basis of all of the traditional ways of judging thyroid function, they were hypothyroid.
Broda Barnes, who worked mostly in Fort Collins, Colorado, argued that the body temperature, measured before getting out of bed in the morning, was the best basis for diagnosing thyroid function.
Fort Collins, at a high altitude, has a cool climate most of the year. The altitude itself helps the thyroid to function normally. For example, one study (Savourey, et al., 1998) showed an 18% increase in T3 at a high altitude, and mitochondria become more numerous and are more efficient at preventing lactic acid production, capillary leakiness, etc.
In Eugene during a hot and humid summer, I saw several obviously hypothyroid people whose temperature seemed perfectly normal, euthyroid by Barnes’ standards. But I noticed that their pulse rates were, in several cases, very low. It takes very little metabolic energy to keep the body at 98.6 degrees when the air temperature is in the nineties. In cooler weather, I began asking people whether they used electric blankets, and ignored their temperature measurements if they did.
The combination of pulse rate and temperature is much better than either one alone. I happened to see two people whose resting pulse rates were chronically extremely high, despite their hypothyroid symptoms. When they took a thyroid supplement, their pulse rates came down to normal. (Healthy and intelligent groups of people have been found to have an average resting pulse rate of 85/minute, while less healthy groups average close to 70/minute.)
The speed of the pulse is partly determined by adrenaline, and many hypothyroid people compensate with very high adrenaline production. Knowing that hypothyroid people are susceptible to hypoglycemia, and that hypoglycemia increases adrenaline, I found that many people had normal (and sometimes faster than average) pulse rates when they woke up in the morning, and when they got hungry. Salt, which helps to maintain blood sugar, also tends to lower adrenalin, and hypothyroid people often lose salt too easily in their urine and sweat. Measuring the pulse rate before and after breakfast, and in the afternoon, can give a good impression of the variations in adrenalin. (The blood pressure, too, will show the effects of adrenaline in hypothyroid people. Hypothyroidism is a major cause of hypertension.)
But hypoglycemia also tends to decrease the conversion of T4 to T3, so heat production often decreases when a person is hungry. First, their fingers, toes, and nose will get cold, because adrenalin, or adrenergic sympathetic nervous activity, will increase to keep the brain and heart at a normal temperature, by reducing circulation to the skin and extremities. Despite the temperature-regulating effect of adrenalin, the reduced heat production resulting from decreased T3 will make a person susceptible to hypothermia if the environment is cool.
Since food, especially carbohydrate and protein, will increase blood sugar and T3 production, eating is “thermogenic,” and the oral (or eardrum) temperature is likely to rise after eating.
Blood sugar falls at night, and the body relies on the glucose stored in the liver as glycogen for energy, and hypothyroid people store very little sugar. As a result, adrenalin and cortisol begin to rise almost as soon as a person goes to bed, and in hypothyroid people, they rise very high, with the adrenalin usually peaking around 1 or 2 A.M., and the cortisol peaking around dawn; the high cortisol raises blood sugar as morning approaches, and allows adrenalin to decline. Some people wake up during the adrenalin peak with a pounding heart, and have trouble getting back to sleep unless they eat something.
If the night-time stress is very high, the adrenalin will still be high until breakfast, increasing both temperature and pulse rate. The cortisol stimulates the breakdown of muscle tissue and its conversion to energy, so it is thermogenic, for some of the same reasons that food is thermogenic.
After eating breakfast, the cortisol (and adrenalin, if it stayed high despite the increased cortisol) will start returning to a more normal, lower level, as the blood sugar is sustained by food, instead of by the stress hormones. In some hypothyroid people, this is a good time to measure the temperature and pulse rate. In a normal person, both temperature and pulse rate rise after breakfast, but in very hypothyroid people either, or both, might fall.
Some hypothyroid people have a very slow pulse, apparently because they aren’t compensating with a large production of adrenalin. When they eat, the liver’s increased production of T3 is likely to increase both their temperature and their pulse rate.
By watching the temperature and pulse rate at different times of day, especially before and after meals, it’s possible to separate some of the effects of stress from the thyroid-dependent, relatively “basal” metabolic rate. When beginning to take a thyroid supplement, it’s important to keep a chart of these measurements for at least two weeks, since that’s roughly the half-life of thyroxine in the body. When the body has accumulated a steady level of the hormones, and begun to function more fully, the factors such as adrenaline that have been chronically distorted to compensate for hypothyroidism will have begun to normalize, and the early effects of the supplementary thyroid will in many cases seem to disappear, with heart rate and temperature declining. The daily dose of thyroid often has to be increased several times, as the state of stress and the adrenaline and cortisol production decrease.
Counting calories achieves approximately the same thing as measuring oxygen consumption, and is something that will allow people to evaluate the various thyroid tests they may be given by their doctor. Although food intake and metabolic rate vary from day to day, an approximate calorie count for several days can often make it clear that a diagnosis of hyperthyroidism is mistaken. If a person is eating only about 1800 calories per day, and has a steady and normal body weight, any “hyperthyroidism” is strictly metaphysical, or as they say, “clinical.”
When the humidity and temperature are normal, a person evaporates about a liter of water for every 1000 calories metabolized. Eating 2000 calories per day, a normal person will take in about four liters of liquid, and form about two liters of urine. A hyperthyroid person will invisibly lose several quarts of water in a day, and a hypothyroid person may evaporate a quart or less.
When cells, because of a low metabolic rate, don’t easily return to their thoroughly energized state after they have been stimulated, they tend to take up water, or, in the case of blood vessels, to become excessively permeable. Fatigued muscles swell noticeably, and chronically fatigued nerves can swell enough to cause them to be compressed by the surrounding connective tissues. The energy and hydration state of cells can be detected in various ways, including magnetic resonance, and electrical impedance, but functional tests are easy and practical.
With suitable measuring instruments, the effects of hypothyroidism can be seen as slowed conduction along nerves, and slowed recovery and readiness for new responses. Slow reaction time is associated with slowed memory, perception, and other mental processes. Some of these nervous deficits can be remedied slightly just by raising the core temperature and providing suitable nutrients, but the active thyroid hormone, T3 is mainly responsible for maintaining the temperature, the nutrients, and the intracellular respiratory energy production.
In nerves, as in other cells, the ability to rest and repair themselves increases with the proper level of thyroid hormone. In some cells, the energized stability produced by the thyroid hormones prevents inflammation or an immunological hyperactivity. In the 1950s, shortly after it was identified as a distinct substance, T3 was found to be anti-inflammatory, and both T4 and T3 have a variety of anti-inflammatory actions, besides the suppression of the pro-inflammatory TSH.
Because the actions of T3 can be inhibited by many factors, including polyunsaturated fatty acids, reverse T3, and excess thyroxine, the absolute level of T3 can’t be used by itself for diagnosis. “Free T3” or “free T4” is a laboratory concept, and the biological activity of T3 doesn’t necessarily correspond to its “freedom” in the test. T3 bound to its transport proteins can be demonstrated to enter cells, mitochondria, and nuclei. Transthyretin, which carries both vitamin A and thyroid hormones, is sharply decreased by stress, and should probably be regularly measured as part of the thyroid examination.
When T3 is metabolically active, lactic acid won’t be produced unnecessarily, so the measurement of lactate in the blood is a useful test for interpreting thyroid function. Cholesterol is used rapidly under the influence of T3, and ever since the 1930s it has been clear that serum cholesterol rises in hypothyroidism, and is very useful diagnostically. Sodium, magnesium, calcium, potassium, creatinine, albumin, glucose, and other components of the serum are regulated by the thyroid hormones, and can be used along with the various functional tests for evaluating thyroid function.
Stereotypes are important. When a very thin person with high blood pressure visits a doctor, hypothyroidism isn’t likely to be considered; even high TSH and very low T4 and T3 are likely to be ignored, because of the stereotypes. (And if those tests were in the healthy range, the person would be at risk for the “hyperthyroid” diagnosis.) But remembering some of the common adaptive reactions to a thyroid deficiency, the catabolic effects of high cortisol and the circulatory disturbance caused by high adrenaline should lead to doing some of the appropriate tests, instead of treating the person’s hypertension and “under nourished” condition.”
“Using thyroid will usually reduce the amount of progesterone needed. Occasionally, a woman won’t feel any effect even from 100 mg. of progesterone; I think this indicates that they need to use thyroid and diet, to normalize their estrogen, prolactin, and cortisol.”
“Barnes experimented on rabbits, and found that when their thyroid glands were removed, they developed atherosclerosis, just as hypothyroid people did. By the mid-1930s, it was generally known that hypothyroidism causes the cholesterol level in the blood to increase; hypercholesterolemia was a diagnostic sign of hypothyroidism. Administering a thyroid supplement, blood cholesterol came down to normal exactly as the basal metabolic rate came up to the normal rate. The biology of atherosclerotic heart disease was basically solved before the second world war.”
“If a person has an enlarged thyroid gland, progesterone promotes secretion and unloading of the stored “colloid,” and can bring on a temporary hyperthyroid state. This is a corrective process, and in itself isn’t harmful. A thyroid supplement should be used to shrink the goiter before progesterone is given. Normal amounts of progesterone facilitate thyroid secretion, while a deficiency, with unopposed estrogen, causes the thyroid to enlarge.”
“When too little protein, or the wrong kind of protein, is eaten, there is a stress reaction, with thyroid suppression. Many of the people who don’t respond to a thyroid supplement are simply not eating enough good protein.”
“When a person is using a thyroid supplement, it’s common to need four times as much in December as in July.”
“..but the important point is that in normal people a totally suppressed thyroid function takes only two or three days to return to normal when the suppressive treatment is stopped. In a small percentage of a hypothyroid people, treatment for a short time with thyroid supplementation can stimulate recovery of normal thyroid function, by activating the brain-pituitary system, raising blood sugar which activates the liver enzyme system that produces T3, and by lowering the anti-thyroid stress hormones. Without using radioactive material, it is easy to visualize the process of suppression: very obvious depressions in the neck thyroid region on a thoroughly suppressive dose, and reducing the dose for a few days restores the neck contour. This very rapid adaptation of the gland’s anatomy and function to exogenous thyroid is necessary, because of the irregularity of our consumption of thyroid substance in the natural diet. Until this century, everyone ate the thyroid in various small animals, and we still get some in milk and shellfish and a few exotic foods.
The issue is different with thyroxin, T4. The bulk of our active T3 hormone is produced in the liver, as part of a quickly adaptive system for adjusting the metabolic rate in relation to nutritional status, but the pituitary is also able to convert T4 to T3 and a high level of T4 will cause suppression of TSH secretion, even if the liver is failing to produce the active T3, as in aging, stress, cirrhosis, and various other diseases. Thyroxin can literally make hypothyroidism worse. In this case you have suppression without a compensating absorption of active hormone.
Although a little thyroid substance is a normal dietary factor, and digestion of the glandular colloid converts the protein into the hormones in the same king of process that occurs in normal secretion from the living gland, I agree with Morstein that it is important to restore the gland’s normal function as far as possible.”
“The liver has to convert T4 to T3 for it to be effective. It needs glucose and selenium to make the conversion. Adequate protein, at least 80 grams per day, is necessary. Sea food, once a week will provide selenium, two quarts of milk and a quart of orange juice would provide many of the other essential nutrients. Taking T4 at bedtime sometimes is helpful. Most people feel best on a ratio of T4:T3 of 4:1 or less. Checking the relaxation rate of the Achilles reflex is a quick way to check the effect of the thyroid on your nerves and muscles; the relaxation should be instantaneous, loose and floppy.”
“The working thyroid gland produces about the equivalent of 4 grains of desiccated thyroid per day, and that is about 70% thyroxine, T4, which allows the liver to make as much of the active T3 hormone as needed (if it is well nourished, and not blocked by PUFA or estrogen or other inhibitor). So taking that amount makes up for what your gland would be producing; by suppressing TSH, which stimulates the growth and activity of the thyroid, it also protects against the recurrence of cancer if it wasn’t all removed (some types of cancer were treated just by supplementing thyroid, without surgery). Since the desiccated thyroid is made available by being digested, it’s best to divide the day’s dose, with some at each meal and at bedtime, so that the amount of active hormone entering the blood isn’t too high at any time.”
“It isn’t a matter of T3 entering cells, it’s assuring that it is either made by conversion from the T4, or taken as a supplement.”
“Two background facts are needed to interpret the JAMA article. The first is that hypothyroidism is a major cause of breast cancer, because of the chronic excess of estrogen and deficiency of progesterone. The second is that US doctors don’t correct hypothyroidism, because they don’t prescribe the active hormone T3, only the precursor T4, which fails to be converted because hypothyroid women’s livers aren’t efficient. T3 is needed for the storage of glycogen and the efficient use of glucose, and glucose is needed to form T3. Therefore, women in the US who “are treated for hypothyroidism” are still hypothyroid, and hypothyroid women are much more likely to get cancer.”
“Pigs’ and cows’ thyroids are very similar to people’s, with a ratio usually between 3:1 and 4:1. The blood serum of hypothyroid people can have a ratio of 50:1 or 100:1, when the liver is failing to convert thyroxin. Maybe the authors of the book are physicians, educated by pharmaceutical advertisements.”
“The old Armour thyroid, made from beef and pork glands before 1990, did contain other components that were probably valuable, but when T3 is absorbed by mitochondria it’s immediately changed into T2, so the synthetic T3’s effects can’t be distinguished from those of a mixture of T3 and T2. The company that now makes Armour thyroid started removing the calcitonin in the 1990s, to sell as a separate product.”
“If someone is in a precarious condition, even smaller amounts (of T3) at a time might be better. For example, a man in the hospital right after a heart attack started taking one mcg per hour; the doctors had said that at the rate his enzymes were rising they would be expected to keep rising for another day, but they started decreasing exactly when he started the small doses, and they had decreased the next day when he left the hospital, without symptoms. T3, sugar, and aspirin are the most heart-protective things.”
“Since the body normally produces about 4 mcg of T3 in an hour, taking 10 or 20 mcg at once is unphysiological.”
“…..a starting dose of about 1 mcg can produce a noticeable effect, and can be repeated at intervals according to the effect. 5 mcg with a meal is another way to start it. Thyroid tends to lower cholesterol by converting it into pregnenolone and other steroids, and yours is high enough to easily improve your steroid hormone balance.”
” I have known people who took that much, but when it’s taken in small doses, 50 mcg will usually normalize any hypothyroid metabolism. The body’s total daily production of T3 is close to 100 mcg.”
“I think hypothyroidism and bowel inflammation are the important thinks in gout. Raw carrot salad and aspirin, and correcting thyroid function, usually take care of it.”
“Yes, women are more often the ones who need specific T3 supplementation, because T4 can accumulate, unconverted by the liver, suppressing the gland’s function.”
“In the adrenals, cholesterol passes quickly from pregnenolone to DHEA, in the ovaries it goes right from pregnenolone to progesterone. T3 is responsible for the oxidative activity that governs the conversion of cholesterol.”
“Usually a resting pulse rate of 85 is good, an oral temperature of 98.6. T3 taken at a certain amount (for example 3 micrograms) every few hours will have increasing effects over several days, the combination with T4 taken at a certain daily amount will have increasing effects for a couple of weeks, and the dose can be increased after time has been allowed for that cumulative increase. The dose usually has to be increased in steps for a few months, to find how much is needed for sustained good health. After a year or more of good health, the amount needed will usually decrease, if the diet has been good during that time.”
“With your TSH so high, you should probably add a thyroid supplement, until you get it down to about 1.0, or less. (The normal range, according to the American Association of Clinical Endocrinologists, is from 0.3 to 3.0.)”
“If too much accumulates [T4], it competes with the T3 in the brain, lowering cell respiration, possibly increasing lactic acid and nitric oxide.”
“Hypertriglyceridemia can be caused by a variety of things that interact with hypothyroidism. Estrogen treatment is a common cause of high triglycerides, and deficiencies of magnesium, copper, and protein can contribute to that abnormality. Toxins, including some drugs and herbs, can irritate or stimulate the liver to produce too much triglyceride. T3, triiodothyronine, is the active thyroid hormone, and it is produced (mainly in the liver) from thyroxine, and the female liver is less efficient than the male liver in producing it, as is the female thyroid gland. The thyroid gland, which normally produces some T3, will decrease its production in the presence of increased thyroxine. Therefore, thyroxine often acts as a “thyroid anti-hormone,” especially in women. When thyroxine was tested in healthy young male medical students, it seemed to function “just like the thyroid hormone,” but in people who are seriously hypothyroid, it can suppress their oxidative metabolism even more. It’s a very common, but very serious, mistake to call thyroxine “the thyroid hormone.”
High cholesterol is more closely connected to hypothyroidism than hypertriglyceridemia is. Increased T3 will immediately increase the conversion of cholesterol to progesterone and bile acids. When people have abnormally low cholesterol, I think it’s important to increase their cholesterol before taking thyroid, since their steroid-forming tissues won’t be able to respond properly to thyroid without adequate cholesterol.”
“He [Dr. Lowe] had a particular idea about what causes thyroid resistance, wrote about a genetic problem, so it implied a permanent situation. When a hypothyroid person started a supplement, the traditional method was to increase the dose until he got the effect he wanted. Most people can start with much bigger doses than they are going to need when it has taken effect, so the method should be to watch the lines on the chart rise toward the desired points (for example, resting pulse of 85/minute, midday temperature of 98.6), and to watch indicators such as sleep, appetite, and mood, then to decrease the dose, so that the indicators stay at the desired level. Within a few days, or weeks, or months, an hourly 4 mcg total, endogenous and exogenous, will turn out to be close to what it takes to make things work right.”
“Some people prefer a combination, but it’s important to limit the amount of T3 in each dose, because it’s very quick acting; with a meal, 10 mcg is o.k. You should check your temperature and pulse rate regular as you adapt to a certain dose, because it accumulates in the tissues for a few weeks, with increasing effects.”
“The liver provides about 70% of our active thyroid hormone, by converting thyroxine to T3, but it can provide this active hormone only when it has adequate glucose.”
“Thyroid hormone is necessary for respiration on the cellular level, and makes possible all higher biological functions. Without the metabolic efficiency which is promoted by thyroid hormone, life couldn’t get much beyond the single-cell stage. Without adequate thyroid, we become sluggish, clumsy, cold, anemic, and subject to infections, heart disease, headaches, cancer, and many other diseases, and seem to be prematurely aged, because none of our tissues can function normally. Besides providing the respiratory energy which is essential to life, thyroid hormones seem to stimulate and direct protein synthesis. In hypothyroidism there is little stomach acid, and other digestive juices (and even intestinal movement) are inadequate, so gas and constipation are common. Foods aren’t assimilated well, so even on a seemingly adequate diet there is ‘internal malnutrition.’ Magnesium is poorly absorbed, and a magnesium deficiency can lead to irritability, blood clots, vascular spasms and angina pectoris, and many other problems. Heart attacks, hardening of the arteries, and both high and low blood pressure can be caused by hypothyroidism.”
“With T3, the effect is quick (starting within a few seconds when you chew it), and decreasing gradually after about two hours, so it’s possible, in a fairly short time, to explore the effects of different amounts of it, and the way it accumulates in the body, with increasing effects. It’s helpful to keep notes of the exact time, the amount, and heart rate.”
“There’s almost no context in which I would speak of “an appropriate dose of T4,” since thyroxin is so effective as an antithyroid substance. It’s appropriate if you are also taking T3, or if you want to shrink your thyroid. Thyroid will dependably correct your pregnenolone production, if you have enough cholesterol, vitamin A, and protein. The cholesterol will be consumed to make pregnenolone and progesterone and bile acids. If cholesterol is below 160, fruit sugar helps to raise it. The protein is needed to detoxify estrogen, unsaturated oils, etc, and to maintain the T3. Protein deficiency gives antithyroid signals, and T4 will be used to make reverse T3 to inhibit T3’s effects. About 3 mcg of T3 especially if it’s taken with milk or gelatine-rich salty soup is effective for stopping the nocturnal alarm reaction.”
“The metabolic rhythm should correspond to the light-dark rhythm, because darkness is a basic biological stress, and sleep is protective against the stress of darkness. Since TSH has many maladaptive effects, and rises along with prolactin and cortisol during the night, some thyroid taken at bedtime helps to reduce the stress, moderating the TSH rise while keeping the blood sugar from falling too fast. Ice cream (i.e., sugar and fat with a little protein) at bedtime has a similar effect, reducing the rise of adrenaline, cortisol, etc., with the result that the morning cortisol peak will be lower, preferably below the middle of the common range, and then it should decline in the afternoon.”
“My basic approach is to lower estrogen and the stress hormones by diet including a daily carrot salad, supported by thyroid supplements as needed.”
===
“A person may have normal levels of thyroxin but not be converting it adequately to the active form of the thyroid hormone (triiodothyronine or liothyronine). High cholesterol is practically diagnostic of hypothyroidism. Why? Because thyroid hormone controls the conversion of cholesterol to important anti-aging hormones and to bile salts. However, many hypothyroid people have low cholesterol from a suppressed immune system, liver problems or from eating a low protein (vegan) diet.
The late Dr. Broda Barnes introduced the basal temperature test as an easy way to determine adequate thyroid function. It’s important to do an oral temperature test. The oral temperature is measured with an oral digital thermometer after arising. Women should do this during their menses to ensure missing the rise of temperature during ovulation. The morning oral temperature after arising should be 98.0 degrees F. It should then rise to 98.6-99 degrees F between 11 am and 2 pm and the resting daytime pulse should be around 85 beats per minute. The national average is around 72. If your pulse is less than 80, you may have an underactive thyroid (however a hypothyroid person with high adrenalin can have a pulse of as high as 150). Babies have a pulse greater than 100 until around the age of eight years when the pulse slows down to around 85. Dr. Peat says that the idea of a slow pulse being healthy is folklore. Thyroid needs increase during the cold, dark winters and decrease during the warm summer days when there is more sunlight. In addition to the seasons, any kind of stress hinders thyroid function.” -Lita Lee, PhD
Thanks for putting this together 🙂
My pleasure.
Great article!
This is great info. In one section your refer to taking a thyroid supplement before supplementing with progesterone. Can you tell me what supplement you would recommend?
Also, you refer to not eating enough of the “right” protein interfering with thyroid supplements… can you please tell me what you consider the right protein? Grass-fed meats? Quantity of protein?
Thanks so much!
Maria
Good article, but I have my doubts about this:
If Cytomel is used, it is efficient to approximate the physiological rate of T3 formation, by nibbling one (10 to 25 mcg) tablet during the day. When a large amount is taken at one time, the liver is likely to convert much of it to the inactive reverse T3 form, in a normal defensive response.
Isn’t it common knowledge that only T4 can convert into reverse T3? I couldn’t find anything online about T3 converting into reverse T3. Also, most people who use T3 have to take much larger doses to get an effect. See Recovering With T3 by Paul Robinson (a patient who has been taking T3 for more than 10 years and spends a lot of his time consulting with other thyroid patients who need pure T3 to get well).
@ Janet
Yes, that was confusing to me as well. I emailed Dr. Peat about the same quote in April 2012. Here is the Q and A:
Me:
Also, can the liver make reverse T3 from both T4 and T3?
Dr. Peat:
It’s made only from T4.
Me:
This quote from your writings confused me on the matter of whether rT3 could be made from T3 if an individual were to take too much T3 at one time.
“If Cytomel is used, it is efficient to approximate the physiological rate of T3 formation, by nibbling one (10 to 25 mcg) tablet during the day. When a large amount is taken at one time, the liver is likely to convert much of it to the inactive reverse T3 form, in a normal defensive response.”
Dr. Peat:
I said it wrong, what happens is that when the liver has too much of it, if there is also T4 present, it converts some T4 to reverse T3.
@Maria
Thyroid supplementation is available by prescription so your options should be discussed with your physician.
When I refer to protein, I am speaking of animal-derived protein. Minimum intake for most sedentary individuals is around 80 to 100g daily while more active individuals should exceed 120g daily.
PUFA negatively effect protein digestion and should be avoided. Herbivorous animals like goat, lamb, buffalo, and cow are superior to poultry and pigs because they are more saturated fat-rich due to difference in their digestive physiology. Well-raised animals are ideal, preferably from local sources.
Adult protein choice general template:
Emphasize dairy, eggs, gelatin, broth daily
Organ Meat 1x meal weekly
Muscle Meat or Low Fat Fish 1-3x meals weekly
Shellfish 1-4x meals weekly
Eat meats earlier in day ideally to promote sleep quality and optimal nocturnal temperature/pulse
No OJ/citrus with meats – Iron
Will you elaborate on the last item in your 12/18/12 reply, re: No OJ/citrus with meats – Iron” or refer me to an appropriate reading reference? Thank you!
Vitamin C and Iron Absorption
http://www.functionalps.com/blog/2012/02/15/vitamin-c-and-iron-absorption/
THANK YOU!!!
would there be any other causes for low body temp? usually 97.1 in AM and 97.6-98 mid day. Full tyroid panel showed normal.
I am experiencing severe insomnia. I do not have a great deal of difficulty getting to sleep around 9pm, but I invariably wake up around midnight, drifting into a fitful sleep around 3-4 am. My basal temperature now is rarely above 36.5, is usually 36.3 and often sinks to 36.2 celsius. I have read that one can help this problem by certain foods before retiring to raise blood sugar levels. Do you have any recommendations? DESPERATELy Tired
This symptom is common since the hypothyroid are prone to hypoglycemia which wakes you up prematurely. Broda Barnes wrote an entire book on this idea entitled “Hope for Hypoglycemia: It’s Not Your Mind, It’s Your Liver.” You can purchase the book here — http://www.brodabarnes.org/bookstore.htm
The basic premise is that thyroid hormone supports the efficient use of glucose and the storage and release of glycogen (stored glucose) by the liver. When you’re not eating during sleep, you’re dependent upon your liver’s storage of glycogen and the meal you had prior to bed to keep the blood sugar stable. If your blood sugar drops excessively during sleep, you will awaken often or prematurely as stress hormones rise in the effort to increase the blood sugar. The hypothyroid are prone to drops in the blood sugar and thus are susceptible to waking, especially between the hours of 12 and 3 pm from my experience.
I wrote a blog on improving sleep quality. You will likely find it beneficial.
10 Tips for Better Sleep
http://www.functionalps.com/blog/2012/06/12/10-tips-for-better-sleep/
This blog will help you understand more concepts that relate to blood sugar, the liver, and thyroid hormone.
Ray Peat, PhD on Low Blood Sugar & Stress Reaction
http://www.functionalps.com/blog/2012/11/26/ray-peat-phd-on-low-blood-sugar-stress-reaction/
This blog provides insight into how to correlate your temperature and pulse rate to your metabolic intensity.
Temperature and Pulse Basics & Monthly Log
http://www.functionalps.com/blog/2012/11/19/temperature-and-pulse-basics-monthly-log/
“40 mcg of T4 and 10 mcg of T3 once a day”
I am confused he recommends regularly not to take such a large does of T3 at once.
Is it because of the combination of t4/t3 here the t3 is absorbed more slowly?
Is this also taken with a meal? because most studies say supplemental t4 should be taken alone due to absorbstion.
Thanks
10 mcg is not a large dose. His is recommending a physiologically relevant ratio of T4 to T3 (4:1) that mimics what your thyroid gland produces naturally and what you find in desiccated thyroid products from both past and present.
I repeatedly hear that thyroid supplements shouldn’t be taken with food, but I have not seen a reference nor the logic to support the idea.
Hi I have been tested and have a TSH of 4.0 , t3,t4 ,t2 are all normal. Also every year my TSH goes up slightly. I do not want to go on medicine. I want to get to the root of the problem and fix this. I can never get a answer directly on how I can lower my TSH to normal and what is causing it to be high.please tell me what I can do to lower it? My temperature is usually 97.3 in morning.
Also my metabolism has shut down. What can I do to get it back working and lose weight?
Great article! I was diagnosed with extremely elevated cortisol output during the night and first half of the day. The blood tests however showed my thyroid functions to be normal. Reading this article, now I am not so sure.
My doc put me on 1,000mg L-tryptophan at night with 6,000mg of phosphatidylserine and then 500mg of L-tryptophan and 10mg of DHEA in the morning.
I was wondering if that sounds like something safe and productive for lowering cortisol or not, especially since I have read that if cortisol production is through the roof than the thyroid is not functioning properly and thryptophan suppresses thyroid function. I am not sure the mainstream western focused docs are the best option to consult.
Thanks
So if my thyroid was ablated with Radioactive iodine, and I take a T3 supplement (WP thyroid 81.25 mg), but my waking pulse is 56 and temp is 97.1, what does that mean?
I read here 50 mcg is enough to correct almost any metabolism.
However i was originally taking 25 felt great moved upto 37.5 felt great and than all of a sudden it had little effect. I than ramped upto 50 mcg and again very little to no effect.
Any idea what would cause such an issue?
@Carolyn
Likely means you’re not taking enough supplemental thyroid or you’re not converting the supplement you’re taking effectively enough into T3. Discuss that topic with your physician.
@Wolf
Correcting thyroid deficiency, balancing blood sugar with physiologically relevant food choices, and lowering your stressors as much as possible sounds like a logical approach. Supplementing with tryptophan isn’t a sound practice in my opinion especially if cortisol is high since you’ll be freeing tryptophan from skeletal muscle in such a state.
@Heather
Each person has a different context so it’s difficult to say how to lower your TSH and jumpstart your metabolism without knowing more about you.
Normalizing the thyroid system involves improving the health and function of the thyroid gland itself and/or ensuring that the peripheral tissues (especially the liver) are equipped to convert T4 to T3. T3 isn’t available to cells in adequate amounts in hypothyroidism (low body temperature). Often the conversion of T4 to T3 in the liver is a limiter for people as their gland seems to be functioning adequately but conversion to T3 is underwhelming.
You may have entered a life preservation or conservation-like mode due to prolonged stress or an acute stress or both at some time during your lifetime. To get back to a thriving, youthful mode once again direct your studies and nutrition towards T3 production. As your body temperature improves, expect your TSH to head closer to 1.0 or below. If you have ongoing stressors in your life at present, avoiding or limiting those are paramount to your success as stress often starts and will continue to cause metabolic suppression.
@Carson
Maybe you experienced a stressor of some sort (like a change in season, change in job, loss of loved one, increased in exercise, etc.) which changed the internal environment making your dose of T3 too little given the circumstances.
I’ve read that Dr. Denis Wilson’s T3 protocol for Wilson’s Temperature Syndrome goes incrementally as high as 180 mcg a day in two 90 mcg doses. Learn more about the concepts on this blog.
T3 Therapy to Reset Low Body Temperature in Hypothyroidism
http://www.functionalps.com/blog/2017/01/23/t3-therapy-to-reset-low-body-temperature-in-hypothyroidism/
Use the “Also See” section for further insight.
@LC
Chronic, gradual or acute stress and hypothyroidism are the two primary factors that I know of.
The thyroid gland is only a part of the picture so a thyroid lab can be normal, but you can still present with hypothyroid symptoms and a low body temperature because peripheral conversion of T4 into T3 isn’t adequate so your cells are “starving” for more T3.
Normalizing the thyroid system involves improving the health and function of the thyroid gland itself and/or ensuring that the peripheral tissues (especially the liver) are equipped to convert T4 to T3. T3 isn’t available to cells in adequate amounts in hypothyroidism (low body temperature). Often the conversion of T4 to T3 in the liver is a limiter for people as their gland seems to be functioning adequately but conversion to T3 is underwhelming.
You may have entered a life preservation or conservation-like mode due to prolonged stress or an acute stress or both at some time during your lifetime. To get back to a thriving, youthful mode once again direct your studies and nutrition towards T3 production. If you have ongoing stressors in your life at present, avoiding or limiting those are paramount to your success as stress often starts and will continue to cause metabolic suppression.